
PROGRAMMABLE CALCULATOR

ET-57

User's Guide

ET-57 Page 2

ET-57 Programmable Calculator

User's Guide

Calculator version 201101

March 2023

from the original manual by Miroslav Nemecek
translation and adaptation by Pierre Houbert

website: http://www.breatharian.eu/hw/et57/

ET-57 Page 3

Summary

1 Keyboard layout 6

2 Features 8

3 Description 9

4 How to use the calculator 10

5 Deviations from the TI-57 11

6 Numbers format 12

7 Key-

board

14

8 On-screen indicators 15

9 Number editor 16

10 Numerical expressions 17

11 Registers Addressing 18

12 Programming 22

13 External Devices and Ports 24

14 Keys and instructions 29

0 0...9 Basic digits 29

10 OFF Stop calculator (ET-57B) 29

11 2nd Alternate function 29

12 INV Inverse of a function 30

13 lnx Natural logarithm and exponent 30

14 CE Error correction 30

15 CLR Clearing the display 31

18 log Decimal logarithm and exponent 31

19 C.t Clear register T 31

20 tan Tangent 31

21 LRN Programming 32

22 x<>t Exchange of X and T registers 32

23 x^2 Square of a number 32

24 Vx Square root of a number 32

25 1/x Inverse of a number 32

26 D.MS Conversion of minutes and seconds 33

27 P->R Conversion polar / cartesian 34

28 sin Sine 34

ET-57 Page 4

29 cos Cosine 35

30 pi Ludolf's number 35

31 SST Advance one step in program 35

32 STO Store a number in a register 35

33 RCL Recall a number from a register 35

34 SUM Add and subtract into a register 36

35 y^x Power and root 36

36 Pause Delay 36

37 Ins Inserting an empty step in the program 36

38 Exc Exchange X with a register 36

39 Prd Multiply and Divide in a register 37

40 IxI Absolute value 37

41 BST Back step in program 37

42 EE Exponent mode 37

43 (Left parenthesis 37

44) Right parenthesis 37

45 : Divide 38

46 Nop No operation 38

47 Del Delete a program step 39

48 Fix Number of decimal places 39

49 Int Integer part 39

50 Deg Degrees 39

51 GTO Go to a label (or address) 39

55 x Multiply 39

56 Dsz Program Loop after decrement 40

57 STO* Indirect storage of a register 41

58 RCL* Indirect recall of a register 41

59 SUM* Indirect add into a register 41

60 Rad Radians 42

61 SBR Subroutine call 42

65 - Substraction 42

66 x=t Equality test 42

ET-57 Page 5

67 Inc* Register Increment/Decrement 42

68 Exc* Indirect exchange X with a register 43

69 Prd* Multiply in an indirect register 43

70 Grd Gradians 43

71 RST Reset step address 43

75 + Addition 43

76 x>=t Greater than or equal to 44

77 Inc Increment/Decrement a Register 44

78 Pgm Program space selection 44

79 Rand Random number generator 45

80 Var Scatter 46

81 R/S Program start and stop 46

83 . Decimal point 47

84 +/- Change of sign 47

85 = Perform the calculation 47

86 Lbl Labels 47

87 x! Factorial 48

88 Stat Statistics 48

89 Mean Mean 49

15 Sample programs 50

1 Roll the Dice (ET-57 Version) 50

2 Roll the Dice (TI-57 Version) 51

3 LED light snake 52

4 Calculation of the polynomial 53

5 Complex numbers 55

6 Ramanujan approximation of the factorial x! 61

7 Stirling approximation of the factorial ln(x!) 63

8 Determining the zeros of a function 66

9 Simpson's rule for integration 71

10 Linear regression line 74

ET-57 Page 6

For each key, the basic meaning is shown on the first line and the alternative meaning

on the second line of the screen (after pressing the key).

1. Keyboard layout

ET-57 Page 7

ET-57 Page 8

2. Features

Summary : Calculation accuracy of 17 mantissa digits (BCD code), 11 mantissa digits

displayed. 80 registers (RAM), 500 program steps (EEPROM), ARmega8 processor, LCD

screen.

• ATmega8 processor (8 MHz, 8 KB ROM, 1 KB RAM, 512 B EEPROM)

• Supply voltage 5 V (from USB charger or USB port)

• Calculations in BCD code
• 40 key keyboard
• Two-line LCD display (2 x 16 alphanumeric characters)

• 17-digit calculation accuracy
• Accuracy of base registers 15 digits
• Accuracy of extended registers 13 digits
• Data display to 11 significant digits
• Scientific display mode with exponent on 2 digits, from - 99 to +99

• 10 program spaces

• 50 program steps per space (500 steps total)

• 10 labels per program space

• Function calls and jumps between program spaces

• User program stored in EEPROM (without battery)

• 10 base registers (accessible by direct addressing)
• 70 extended registers (accessible by indirect addressing)
• Indexing access to variables
• Exponential and logarithmic functions

• Trigonometric functions

• Statistical functions
• Factorial
• Random number generator

• Fully open source hardware and software
• Controlling an external device via the ISP connector
• Calculator code entirely written in AVR assembler

ET-57 Page 9

3. Description

The ET-57 calculator is conceptually based on the famous TI-57 calculator, developed

in 1977 by Texas Instruments.

It tries to maintain compatibility with programs written for the TI-57 while extending

functionality by utilizing the capabilities of the processor being used.

The functionality is extended by more program spaces (10 spaces for a total of 500

steps), more data registers (80), direct and indirect addressing, factorial, random

number generator...

The calculator is intended for former users of the TI-57 calculator, those interested in

retro technology, and as a teaching aid to familiarize themselves with the principles of

calculator use and programming.
For this reason, they strive to simplify the design as much as possible, consisting only
of microswitches, a processor, an LCD screen, a connector for the external power sup-
ply and a few small components.

The ET-57 is a tool made for experimenting, teaching, or being used in the office with

external power from a USB charger or USB port.

In addition to the basic ET-57 variant with an ATmega8 processor, the calculator can
also be available in the hardware variant of the ET-58 calculator, with ATmega88, AT-
mega168 or ATmega328 processors.

This ET-57B variant differs from the base variant in that it allows the calculator to be

turned off (OFF button) and LCD screen contrast control, but does not provide access

to external devices (the ET-58 calculator does not include an ISP connector).

ET-57 Page 10

4. How to use the calculator

The ET-57 calculator is equipped with a 2-line alphanumeric LCD display, 40 micros-

witches and a processor.

Since the calculator is not battery powered (it is intended for desktop use with external

power from a USB charger or USB port), it does not include a power switch. feed.

The user program is stored in the EEPROM memory, the content of which is retained

even without power supply.

By disconnecting the power supply, the calculator is reset, the registers, the contents of

the display and the operations started are erased, only the contents of the user program

(in the EEPROM) remain.

After connecting the power, the calculator name will be displayed on the calculator

screen for 1 second, along with a 6-digit code representing the date of the calculator's

firmware version.

For example. "ET-57 201101" means firmware date (build) 11/1/2020.

The calculator in the ET-57B variant (reprogrammed ET-58 calculator processor) can be

turned off by pressing 2nd CLR (function OFF) and turned on by pressing CLR.

 By pressing INV 2nd CLR (LCD function) followed by a number from 0 to 9, the

contrast of the display can be controlled.

ET-57 Page 11

5. Deviations from the TI-57

Although the ET-57 calculator software strives for maximum compatibility with the

original TI-57 calculator, deviations may occur and some programs may need to be

modified upon import.

Here are the known discrepancies that may need to be taken into account :

Greater accuracy

The original TI-57 calculator operates with an internal precision of 11 digits (11 BCD

digits of the mantissa, 2 digits of the exponent, 1 digit of the sign, 7 bytes in total) and

displays a maximum of 8 digits of the mantissa.

The ET-57 calculator calculates internally with a mantissa precision of 17 digits (10

bytes per number).

It stores the result of the calculation in base registers (i.e. registers R0..R9 and X) with

a precision of 15 digits (9 bytes). When stored in an extended register (R10..R79), data

is rounded to 13 digits (8 bytes).

The original TI-57 calculator uses the CORDIC method for function calculations, which

allows relatively quick and easy calculations using only basic operations (shift, addition,

subtraction) and table values.

The CORDIC method is used in calculators and internally in processors.

In contrast, the ET-57 calculator uses the Taylor series for calculations, which is more

suitable for the type of processor used.

As a consequence of the above, the original TI-57 calculates with a precision of 9 to 10

digits, the additional 1 to 2 digits of the mantissa include calculation inaccuracies. ET-57

calculates functions with a precision of 15 digits (internally it calculates to 17 digits, by

storing in the register the result is rounded to 15 valid digits).

Higher accuracy is usually not a problem, it can appear, for example, with a random

number generator or when comparing the results of calculators.

Calculation repetition

The ET-57 calculator, after pressing the key, repeats the last entered arithmetic

operation, while on the original TI-57, repeatedly pressing the key causes an error

indication , which some programs use to indicate an error.

In such cases, it is necessary to provide an error indication in another way, for example

with the sequence .

ET-57 Page 12

6. Numbers format

In the original TI-57 calculator, a number is stored in 14-digit BCD registers D13 to D0.

A single digit can take values from 0 to 9. The lower two digits, D1 and D0, contain the

unsigned exponent, ranging from 00 to 99. The upper 11 digits, D12 to D2, contain the

mantissa digits. The mantissa is always left-aligned so that the D12 digit does not

contain zeros. The highest digit D13 contains the sign flags. Bit 0 indicates a negative

mantissa, bit 1 a negative exponent, and bit 2 an inverted mantissa (highest digit carry

sign, mantissa in negative form). This method of interpreting numbers uses CPU support

for BCD operations.

The ET-57 calculator also uses a BCD interpretation of a number's mantissa. The BCD

format provides more appropriate rounding of results for human interpretation. For

example. the number 0.1 is stored in the BCD code as the digit '1' with an exponent of

-1, with no loss of precision. In binary code, such a number would be expressed with the

mantissa 4CCCC... (infinite number of digits), when the simple writing of the number

creates a small error.

The mantissa is not stored in the ET-57 calculator in absolute form with a separate

sign (as in the original calculator), but retains the signed form, with an extension to the

most significant digit. A signed digit contains the value 0 (indicating a non-negative

number) or 9 (indicating a negative number). The negation of a

number means the "decimal complement" of the digits of the mantissa, or the "nines

complement" (= inversion) increased by 1.

The exponent again expresses a decimal exponent, but it is stored in the first byte of

the number as a binary number with a bias of 128. An exponent with a value of 0

(order of ones) is symbolized by the binary value 128. An exponent of 1 (tens) has a

value of 129, an exponent of -1 (tenths) has a value of 127.

The exponent has a range of valid binary values from 29 to 227, which corresponds to a

decimal exponent from -99 to +99.

In addition, 3 special cases of exponent values are used: 0 indicates zero, 28 indicates

an overflow towards negative exponents (too small number) and 228 indicates an

overflow towards positive exponents (too large number).

The calculator uses 3 number formats, differing in the precision of the mantissa:

1) 10-byte numbers (17-digit precision) are used in calculations. The first byte is the

exponent in binary form with a bias of 128. The next 9 bytes contain the mantissa in

signed form, from upper digits to lower digits. This means 1 significant digit and 17

significant digits. By displaying the mantissa in HEX form, the figure is displayed in a

human-readable form, as numbers from left to right.

ET-57 Page 13

The mantissa is normalized so that the first digit (sign) contains 0 (a non-negative

number) or 9 (a negative number). The second digit (the highest digit of the mantissa)

contains a different number than the signed digit - i.e. the mantissa is left-aligned.

2) The base registers (R0 to R9, as well as the X and LAST registers) occupy 9 bytes (15

digit precision). The first byte is the exponent, the next 8 bytes contain 15 mantissa

digits and 1 sign digit.

3) The extended registers (R10 to R79) occupy 8 bytes (precision 13 digits), with a

mantissa of 7 bytes, i.e. 13 digits of mantissa and 1 digit of sign.

The mantissa of the result can be displayed for debugging purposes with the INV +

keys (disabled with INV -). The 16 digits of the X-register are displayed, without the

exponent.

Examples of numbers (in HEX format, including an exponent with a bias of 128) :

 3.14159265358979 -> 80 03 14 15 92 65 35 89 79

-3.14159265358979 -> 80 96 85 84 07 34 64 10 21

 123.456 -> 82 01 23 45 60 00 00 00 00

A famous trigonometry test can be used to test the accuracy of the calculator :

If the calculation is correct, the result should again be the number 9.

The calculation quickly loses accuracy and discrepancies are common with calculators.

For the original TI-57 calculator, the result is 9.0047464 (3-digit precision), for the ET-57

calculator, the test result is 8.9999999976 (9-digit precision).

More information on the accuracy of calculators :

http://www.datamath.org/Forensics.htm

ET-57 Page 14

7. Keyboard

The calculator can work either in direct mode (execution), when the key codes are

executed immediately, or in programming mode, when the key codes are only saved in

the program, but not executed.

The calculator is controlled by a set of 40 keys arranged in 8 rows and 5 columns.

Lines are numbered from top to bottom, in order from 1 to 8.

The columns are numbered from left to right, with numbers from 1 to 5.

It is with this numbering that the key codes are stored in the program.

After pressing the key, the alternate function of the next key is used, indicated by

the column number 6 to 10 (the number 10 is replaced by the number 0 in the code).

When writing the program to memory (using the key), the code of the pressed key

is written to the program as a pair of digits, where the first digit represents the row of

the key (usually 1 to 9) and the second digit represents the column of the key (typically

1 to 5 for the basic function or 6 to 0 for an alternative function).

Numerical key codes from to are not stored in the program using the key
coordinate, but as a decimal value

from 00 to 09.

Note: In the text of the manual, the names of the keys are given without any second

prefix which may be necessary to invoke the function of the key. For example. the

button code (random number) is called by pressing the and keys.

ET-57 Page 15

8. On-screen indicators

The LCD display contains 2 lines of 16 alphanumeric characters.

The first line is used to display the indicators, the second line to display the number

entered and the result of the operation.

Deg/Rad/Grd :

 indication of the angle unit in degrees, radians or gradians.

360° = 2*PI radians = 400 gradians.

The angle measurement unit can be changed with the keys , or .

Opération :

the last position of the 1st line is intended to indicate the active arithmetic operation: +

addition, - subtraction, * multiplication, : division, \ modulo...

Fix 0 à Fix 8 :

indicates the selected rounding of numbers from 0 to 8 decimal places. It is set with

the keys to .

The sequence xxxxxxxxx (xxxxxxxxx also has the same meaning) deactivates the

rounding of the displayed result. In this case, the rounding is not indicated on the

display (it is replaced by spaces).

EE :

indicates exponent mode.

After pressing XXXXXX, the number is displayed in scientific, mantissa and exponent

form.

The mode can be canceled by pressing or .

If exponent mode is off, nothing is shown on the screen..

2nd :

indicates that you pressed the alternate function key .

If a key is pressed after pressing , its alternate function (displayed in the second

row of the keyboard) will be executed instead of its base function.

If the key is not pressed, or if it is pressed twice, the alternative function is not

active, the basic button function is executed.

The basic state is not indicated on the display (spaces are displayed at the position).

INV :

 indicates that you have pressed the key activating the inversion function.

ET-57 Page 16

The entered number, together with the results of the calculation, will be displayed on

the 2nd line of the screen. The mantissa is displayed with a maximum of 11 digits.

1 position is reserved for the sign before the mantissa. A '-' will appear here for negative

numbers, a space will be left for positive numbers.

The exponent is displayed after the mantissa (if exponent mode is active). The

exponent is separated from the mantissa by a + or - sign. The exponent is displayed as

2 digits.

A decimal point is part of the mantissa. In exponent mode in scientific notation

(mantissa and exponent), the decimal point always appears after the first digit. If

exponent mode is not active, a decimal point is displayed after the units digit.

The key deletes the last character of the mantissa or exponent (depending on

where the digits are currently written).

The key starts entering the exponent.

You can return to entering the mantissa by pressing the key (period) or xxxxxxxx.

The key is also used to start editing the displayed result of the operation. This can

be used to remove hidden digits from a number.

9. Number editor

Example : round a number to 4 decimal places.

3.1415926536 example of a number with decimals

3.1416 the display is rounded to 4 decimal places

3.1416+00 start editing, cut hidden digits

3.1416 turn off exponent mode

3.1416 disabling the rounding, the result stays at 3.1416

ET-57 Page 17

10. Numerical expressions

During calculations, the calculator maintains the priority of operations in 3 steps :

����. ^ power, square root

����. * multiplication, : division, \ modulo

����. + addition, - substraction

The calculations are first evaluated at the level ���� power and square root, then ���� mul-

tiplication and division, and finally ���� addition and subtraction.

Any number of parentheses can be used in an expression, up to level 7.

After performing the calculation, you can repeat the calculation of the lowest level by

pressing the key again. .

Enter a number and press to repeat the operation. The entered number is used as

the first operand of the operation, the second operand remains original.

Note: Calculations are performed internally with 17-digit precision. By storing the result

in the X-register, the result is rounded to 15 digits.

Example:

• 3 + 2 = 5
• 4 =6
• 1 0 =12
• 1 0 + 2 * 3 y^x 4 = 172 [similar to 10 + (2*(3^4)) = 172]

ET-57 Page 18

11. Registers Addressing

The calculator contains 10 base registers (named R0 to R9) and 70 additional registers

(named R10 to R79), for a total of 80 data registers (R0 to R79).

The base registers R0 to R9 have a mantissa precision of 15 digits. Base registers are

used as main working registers. They are addressed by direct addressing, using the

instructions :

The base registers are also addressable by the inverse operations :

followed by registry indexes to .

, ,

address the additional registers R10 to R19.

Most basic registers have an additional function:

R0 ... number of elements N (Statistics), loop counter Dsz

R1 ... sum of y (Statistics)

R2 ... sum of y^2 (Statistics)

R3 ... sum of x (Statistics)

R4 ... sum of x^2 (Statistics)

R5 ... sum of x*y (Statistics)

R6

R7 ... registrer T

R8 ... index register for indirect addressing

R9 ... alternative index register for indirect addressing

The additional data registers R10 to R79 have a precision reduced to 13 digits. By

using them, the stored data is shortened by 2 digits.

The instructions , , have the same function as

the instructions without , , but instead of the basic registers R0 to R9, they

ET-57 Page 19

The additional registers (R10 to R79) cannot be addressed by direct addressing, it is

necessary to use indirect addressing :

In indirect addressing, the register number is not part of the instruction, but is read from

register R8 (indirect addressing register). Inverses are treated the same way

Indirect addressing operations preceded by :

The instructions

have the same function as the same instructions without INV, but, in this case, the

alternative index register R9 is used instead of the index register R8.

Note: The base registers R0 to R9 can also be addressed by indirect addressing.

, , , , et

, ,

ET-57 Page 20

Example, reverse order of register contents :

1) Fill registers R10 to R79 with numbers 0 to 69

switch to program space 1 (and reset pointer)

activate programming mode

00 label of subroutine 1 (filling registers)

01 register counter preparation (70 registers)

04 prepare index register - 1 (pointer to R10-1)

06 reset X register

07 loop start label

08 increment R8 (index register)

09 stores the value of X in the register indexed by R8

10 incrementing the X-register

13 decrements R0 and skips the next instruction if R0=0

14 continue the loop if R0 is not yet equal to 0

15 end of program

2) Inversion of register contents (R10<->R79, R11<->R78,...)

16 label of subroutine 2 (inversion of registers)

17 register counter preparation (70 registers / 2)

20 preparing the first index register - 1

22 preparing the second index register + 1

25 loop start label

26 increment R8 (first index register)

27 decrement R9 (second index register)

28 read the value of the register indexed by register R8

29 exchange with the contents of the indexed register R9

30 store the value in the register indexed by R8

31 decrements R0 and skips the next instruction if R0=0

32 continue the loop if R0 is not yet equal to 0

33 end of program

ET-57 Page 21

3) Display of the contents of registers R10 to R79

34 label of subroutine 3 (display registers)

35 register counter preparation (70 registers)

38 prepare index register - 1 (pointer to R10-1)

40 loop start label

41 increment R8 (first index register)

42 read the value of the register indexed by register R8

43 pause to display value

44 decrements R0 and skips the next instruction if R0=0

45 continue the loop if R0 is not yet equal to 0

46 end of program

4) Program testing

exit programming mode

fill registers R10 to R79 with number 0 to 69

display contents of register R19 (9)

check the contents of the registers: the numbers 0 to 69

are displayed

inversion of register contents

display contents of register R19 (60)

check the contents of the registers: the numbers 69 to 0

are displayed

ET-57 Page 22

12. Programming

Writing a sequence of keystrokes to program memory is called a program. The program

turns the calculator into a powerful tool.

Program memory consists of 10 independent program areas, switched by the instruc-

tion with parameters to .

Each program area contains 50 program steps, so a total of 500 program steps are

available.

10 labels , numbered from to , can be used in each program space.

Subroutines can be called or jumps made between program spaces by using the XXX

instruction in the program, this instruction does not change program space perma-

nently, but only for an xxxx or xxxx command .

The programs are stored in the processor's EEPROM memory, the contents of which are

retained even after the calculator's power supply has been disconnected.

The programming mode is started with the key .

The content of the program is displayed on two lines of the display. The bottom line

from the left indicates the current program space (Pgm0 to Pgm9), followed by the

current pointer in the program, i.e. address 00 to 49.

The address is followed by the numeric code of the instruction.

This instruction code consists of 2 digits. The first digit represents the row with the keys

1 to 8, the second digit is the column with the keys 1 to 5 or, for the alternative function,

the column 6 to 0. The numeric keys are displayed with the code 00 to 09.
The instruction code can be followed by a parameter from 0 to 9. The instruction code
can also be preceded by the minus sign '-' signifying the inverse function .

The top line displays the “text” format of the instruction.

ET-57 Page 23

Keys useful for programming :

(Single Step) Increments the program pointer by 1 ("next step"). The SST key

can also be used in normal mode (run). In this mode, after pressing

SST, the code of the current instruction is executed and the

program pointer is positioned on the next step.

(Back Step) Decrement the program pointer by 1 ("previous step").

(Insert) Inserts an empty instruction (Nop) at the current position of the

program and shifts the rest of the program.

(Delete) Deletes the instruction at the current position of the program and

“moves up” the next part of the program.

(Learn) Exits program edit mode and returns the calculator to run mode.

(Go To) The GTO instruction is normally used to move the program pointer

to

the specified label from 0 to 9. In the “programming” mode, the

instruction cannot be used to move the pointer, because the

corresponding code would be stored in the program. He must

therefore exit programming mode by pressing xxxx , make a jump

xxx to the specified label 0 to 9 and return to programming mode

by pressing .

In addition to jumping to a label, GTO allows you to jump to an

absolute address in the program. The jump is made by pressing

xxxxxxx , followed by the 2 digits of the address 00 to 49. The

jump to absolute address instruction cannot be stored in the

program, it is only used to move the pointer during programming

and can therefore be entered at the both in execution and in

programming.

Note: Jumping to an absolute address is done in a different way

(with a different key sequence) on the ET-57 and the original TI-

57. On the original TI-57, the GTO key was pressed first, then the

INV key, and finally the 2-digit address. For the ET-57, you must

first press INV, then GTO and finally the 2 digits of the address.

(Reset) Similar to GTO, cannot be used directly in program mode, but can

be used in run mode to return the program pointer to address 00

in the current program space.

(Run/Stop) Starts the program or stops the program (used in run mode).

ET-57 Page 24

13. External Devices and Ports

The ET-57 calculator allows connection of an external device using the ISP connector,

which is otherwise used to program the calculator's processor. Communication takes

place via the SPI protocol. The ISP connector is an 8-pin KONPC-SPK-8 connector with

the following pin assignment:

• 1 SCK (serial clock, transmitted by computer)

• 2 MISO (calculator data input, device data output)
• 3 MOSI (calculator data output, in-device data input)
• 4 orientation key, pin missing, blinded in connector so it

can't be inserted

• 5 /RESET (processor reset during ISP programming)

• 6 GND (ground, 0V)
• 7 VCC (power supply, +5V)
• 8 unused, connected to +5V in calculator, but in future it
may not be used or may be used for SS signal

The connection cable connects the same pins both in the calculator and in the device

(no signal crossing).

Note: The SS signal on the slave side must be connected to GND.

ET-57 Page 25

The device can be controlled using a 256-byte addressable port network. A negative

number -1 to -256 representing the port address 0 to 255 is stored in the R8 register of

the computer. The STO* instruction sends the number 0 to 255 to the selected port.

Conversely, the RCL* instruction reads the value of the selected port as a number

between 0 and 255.

Similarly, the INV STO* and INV RCL* instructions can be used, in which the R9

register with the port address is used instead of the R8 register. Instructions other

than STO* and RCL* do not allow access to device ports.

If the device is not connected or in another case of a communication error, when using

the STO* and RCL* instructions, the program will stop and indicate an error (flashing

'E'). For INV STO* and INV RCL* instructions, the communication error is ignored, the

program does not indicate the error and continues to run. Typically, when debugging

the program, the STO* and RCL* instructions are used first to ensure that communi-

cation problems are reported. After debugging the program, instructions with INV are

used to ensure that the program will work without interruption for a long time, even in

the event of short-term equipment failures.

Communication takes place using the SPI communication protocol, with a clock

frequency of 250 kHz. The ECU acts as a master (control unit), the external device is

a slave (subordinate unit). The master (computer) sends serial data on the MOSI line,

from the high bit to the low bit. It sends a clock signal to the SCK line, with data

sampling on the rising edge.

At the same time, the slave (device) returns data on the MISO line. The transfer of one

byte (8 bits) takes 32 µs. The master adds a 10 us delay after sending each byte so

that the slave has time to evaluate the received byte.

ET-57 Page 26

The synchronization of the communication between master and slave is not controlled

by the SS signal, but by software, by resetting the reception on the slave side. At the

start of each transmission, the master sends synchronization byte 0x53 (the letter 'S',

at bit level 01010011b). If the transfer is not synchronized, the data on the slave side is

shifted and the slave receives a value other than 0x53. In such a case, the slave sends

byte 0x55 as an indication of a synchronization error, resets the connection and after a

delay of 50 us initiates a new connection. If the slave receives the correct synchroniza-

tion byte 0x53, it responds with the same value of 0x53 and continues communication.

The master sends synchronization bytes 0x53 several times. If it receives a correct

0x53 response from the slave, it continues communication. If it receives a byte of 0xff

or 0x00, it treats it as a device not connected flag and aborts communication with an

error indication. If there are other responses, it adds a delay of 100 us and retries the

synchronization attempt.

After a successful synchronization, the master continues by sending the command 0x52

(letter 'R') to read the port from the device or 0x57 (letter 'W') to write the port to the

device. After the command, the master sends a byte with the port address from 0 to

255. After sending the address, the master sends the third byte of the command - data.

In the case of a write to the port, it will send data 0 to 255 to write to the port. In the

case of a read from the port, the master sends a 0xFF byte, while the slave sends a

byte, it responds with a byte of the data read from the port.

In all other cases, when the slave byte is not specified, the slave responds by repeating

the byte received from the master (echo).

ET-57 Page 27

Example of communication (master/slave) :

- Master writes byte 0x24 to port 0x01

0x53 / 0x ?? ...master sends 5x SYNC commands for synchronization, response from

slave is initially undefined, it is ignored

0x53 / 0x53 ...the slave responds correctly with 0x53, but the master ignores the

response for now, as it may be the rest of the previous communication

0x53 / 0x53

0x53 / 0x53

0x53 / 0x53 ...master detects correct response 0x53, continue

0x57 / 0x53 ...master sends command to write 0x57, slave keeps echoing

0x01 / 0x57 ... the master sends port address 0x01, the slave has detected a write

command, sends the echo of the previous byte and reads the address

0x24 / 0x01 ...the master sends data 0x24 to be written to the port

- Master rereads data from port 0x01

0x53 / 0x01 ... master sends 5x SYNC commands again for synchronization

0x53 0x53 0x53 0x53 / 0x53 0x53 0x53 0x53 ... connected slave

0x52 / 0x53 ... the master sends a command to read 0x52

0x01 / 0x52 ... master sends port address 0x01, slave prepares port data for sending

0xFF / 0x24 ... master sends 0xFF and reads slave data 0x24

ET-57 Page 28

Example source code to handle Slave communication :

ET-57 Page 29

14. Keys and instructions

Each instruction has a BCD program code, a title and a sequence of presses on one or

more keys to express it.

Base digits are used to enter digits in the range 0 to 9. They are used to enter the

mantissa of a number, enter the exponent, memory register number, tag number, and

others.

The numbers are stored in the program with the code 00 to 09.

00...09 0...9 - Basic digits

10 OFF - Stop calculator (ET-57B)

The 2nd CLR (OFF) sequence is used to turn off the calculator.

The calculator can be turned back on by pressing the CLR key alone.

By specifying the INV prefix before the OFF statement, the contrast of the LCD display

can be adjusted.

The instruction requires a numeric code from 0 to 9 as a parameter.

0 sets the lowest display contrast (light font on light background), 9 sets the highest

display contrast (dark font on dark background).

The OFF and INV OFF functions are only available for the ET-57B variant of the

calculator.

The ET-57 calculator cannot be turned off with a button, nor can the contrast of the

display be controlled.

11 2nd - Alternate function

The 2nd key is used to change the meaning of the next key to an alternate function.

After pressing 2nd, the alternate function of the next button is then executed.

A second press on 2nd returns to the basic functions. (cancels the first press on 2nd).

The code for the 2nd key (11) is not saved in the program, it is the alternative code for

the next key which is then saved.

Example:

2 lnx ... calculate the natural logarithm of the number 2 [0.6931...]

2 2nd lnx ... decimal logarithm of the number 2 (log instruction) [0.3010...]

ET-57 Page 30

12 INV - Inverse of a function

The INV key, pressed before another key, will cause that other key to have its function

reversed.

In some special cases, INV will not cause the inverse of the following function but an

additional alternative function.

A second press on INV returns to the basic functions. (cancels the first press on INV).

The INV button code is not saved in the program. It is stored as an instruction indicator

with the minus sign (-) before the instruction code.

Some instructions do not accept the INV prefix, which is then ignored and the

instruction code is stored without the prefix in the program.

Example:

1 0 sin ... calculate the sine of 10 [0,1736...]

0 . 1 2 INV sin ... calculates the arcsine of 0.12 [0.3464...]

13 lnx - Natural logarithm and exponent

lnx calculates the natural logarithm of the displayed number. This natural logarithm

uses Euler's constant as its base with the value 2.718281828459. If the INV button is

pressed first, the inverse function, the natural exponent, is executed.

The argument of the lnx function must be a non-zero positive number. In the case of

zero, the display will flash with the value -9.9999+99, as an error indication.

For a negative number, the absolute value of the number is calculated and the display

flashes again with an error indication.

The argument to the INV lnx function can be a positive or negative number, ranging

from approximately -227 to +227. A number outside this range will result in data

overflow and indicate an error.

Example:
5 lnx ... calculates the natural logarithm of 5 [1.6094...]

5 INV lnx ... calculates the natural exponent of 5 [148.413...]

14 CE - Error correction

CE can be used to cancel the 'E' error indication, manifested by flashing of the display.
When entering a number, the last character entered is deleted by pressing the CE key.

In scientific notation, if the mantissa is being entered, the last character of the mantissa

is removed. If the exponent is being entered, the last character of the exponent is

deleted. If an exponent with a value of 0 is removed, the exponent is canceled and the

input reverts to the mantissa.

ET-57 Page 31

15 CLR - Clearing the display

CLR performs several initialization operations.

It resets started arithmetic operations, resets error indication,

turns off EE exponent mode, resets the X-register, and starts editing a new number with

a default value of 0.

The CLR key does not reset the T register or the data registers.

In the ET-57B calculator variant, the CLR key is used to turn the calculator on (or off).

18 log - Decimal logarithm and exponent

log calculates the decimal logarithm of the displayed number.

The decimal logarithm uses the number 10 as its base. If the INV key is pressed first,

the inverse function, the decimal exponent, is executed.

The argument to the log function must be a non-zero positive number. In the case of

zero, the display will flash with the value -9.9999+99, as an error indication.

For a negative number, the absolute value of the number is calculated and the display

flashes again with an error indication.

The argument of the INV log function can be both a positive number and a negative

number, ranging from -99 to +99. A number outside this range will result in data

overflow and an error indication.

Example:

5 log ... calculates the decimal logarithm of 5 [.69897...]

5 INV log ... calculates the decimal exponent of 5 [100000]

20 tan - Tangent

The tan function calculates the tangent of an angle. The angle is entered in the units

defined by the Deg, Rad or Grad switches.

Typing the INV prefix before the tan statement will perform the opposite function

(arctangent).

The result is an angle in the currently defined angular measurement.

Example:

5 0 tan ... calculates the tangent of 50 [1.19175...]

5 0 INV tan ... calculates the arctangent of 50 [88.85423...]

19 C.t - Clear register T

The C.t key can be used to clear the T register (i.e. R7 register).

Entering the INV prefix before the key C.t clears all registers R0 to R79

(including the T register).

ET-57 Page 32

21 LRN - Programming

LRN enables or disables programming mode.

22 x<>t - Exchange of X and T registers

With the x<>t key, it is possible to switch between the X and T registers.

The X-register is the working register and also the display content.

Register T is an auxiliary (temporary) register, corresponds to register R07. It is used

to compare numbers and to convert polar and Cartesian coordinates.

The X register is reset by the CLR key.

The T register is reset by the C.t key.

24 x - Square root of a number

 calculates the square root of a number. The number must not be negative. If a

negative number is calculated, the square root of the absolute value of the number is

calculated and the error indication 'E' is activated (display flashes).

23 x^2 - Square of a number

The x^2 function calculates the square of a number, or the multiple of a number by

itself.

25 1/x - Inverse of a number

The 1/x function calculates the inverse of a number.

If the number is zero, the value 9.9999+99 is displayed and the error indication 'E' is

activated (display flashes).

This application of 0 1/x is often used in programs to activate error indication and to

signal abnormal operation of the program.

ET-57 Page 33

26 D.MS - Conversion of minutes and seconds

The D.MS instruction is used to convert time expressed in hours/mins/seconds or angle

expressed in degrees/minutes/seconds to a decimal number. The original number

HH.MMSS or DD.MMSS, is entered with the number of hours, or degrees, in the

integer position, then with the number of minutes in the first two decimal places and

finally with the number of seconds in the next two decimal places.

The result of the function is a decimal number representing the number of hours, or

degrees, expressed as a decimal number DD.DDDD.

By specifying the INV prefix before the D.MS instruction, the reverse operation is

performed - time or angle expressed using a decimal number is converted to hours/

minures/seconds or degrees/minutes/seconds .

The decimal number DD.DDDD representing hours or degrees will be returned as

HH.MMSS or DD.MMSS, with the number of hours, or degrees, in the integer part, and

the number of minutes in the first two decimal places followed by the number of

seconds in the next two decimal places. If the result is not an integer number of

seconds, the decimal seconds are padded with additional decimal digits.

Example :

1 2 . 3 0 2 3 D.MS ... conversion to decimals [12.50638...]

+ 3 . 4 5 1 2 D.MS ... conversion to decimals [3.75333...]

= INV D.MS ... resulting time [16.1535]

Sum of time:

12 hours, 30 minutes and 23 seconds

+ 3 hours, 45 minutes and 12 seconds

= 16 hours, 15 minutes and 35 seconds

ET-57 Page 34

28 sin - Sine

The sin function calculates the sine of an angle. The angle is entered in the units defi-

ned by the Deg, Rad or Grad switches.

Typing the INV prefix before the sin statement will perform the opposite arcsine func-

tion. The result is an angle in the defined angular measurement.

The angle calculated by the arcsine function is between -90° and +90°. The input value

of the arcsine function must be between -1 and +1. If it is outside the specified range,

the display is limited to the valid range and an “E” error is indicated (display flashes).

27 P->R - Conversion polar / cartesian

P->R converts the coordinates of the polar expression (radius/angle) into Cartesian

coordinates (abscissa and ordinate).

Before the operation, the T register (i.e. auxiliary register R7) contains the radius and

the X-register (content of the display) contains the angle. The angle is given in the

selected angular measurement (Deg, Rad or Grad).

After the operation, the T register (auxiliary register R7) contains the abscissa X, the X

register (display content) contains the ordinate Y.

By specifying the INV prefix before the P->R instruction, the inverse operation is

performed, the conversion from Cartesian coordinates to polar.

Before the operation, the T register contains the abscissa X, the X register (display)

contains the ordinate Y.

After the operation, the T register contains the radius and the X-register (display)

contains the angle. The angle is given in the selected angular measurement.

Example :

1 0 x<>t ... enter radius 10 in register T

3 0 ... entry of the 30° angle in the X-register

P->R ... conversion from polar to Cartesian coordinates. Y=5

x<>t ... exchange X and T displays coordinates X = 8.6602...

8.6602... x<>t ... X abscissa input

5 ... Y ordinate input

INV P->R ... Cartesian to polar conversion, angle = 30°

x<>t ... swap X and T, show radius 10

ET-57 Page 35

30 PI - Ludolf's number

The pi key is used to enter the constant "Ludolf's number", which has a value of

3.14159265358979.

32 STO - Store a number in a register

STO (Store) stores the displayed number in data register R0 to R9. A register number

from 0 to 9 is entered as an instruction parameter.

The INV prefix before the STO instruction performs a similar function, but instead of

registers R0 through R9, the number is stored in registers R10 through R19. Registers

R10 to R19 belong to the group of extended registers with a precision reduced to 13

digits. Recording deletes the last 2 digits of the mantissa.

33 RCL - Recall a number from a register

RCL (Recall) is used to recall a number from data register R0 to R9 to the display. A

register number from 0 to 9 is entered as an instruction parameter.

Placing the INV prefix before the RCL instruction performs a similar function, but

instead of the R0 to R9 register, the number is read from the R10 to R19 register.

Registers R10 to R19 belong to the group of extended registers with a precision

reduced to 13 digits. The mantissa is completed by 2 digits 0 at the end.

31 SST - Advance one step in program

The SST (Single Step) key increments the program address pointer by 1 in program-

ming mode.

In run mode, the program statement, on which the pointer is positioned, is executed,

allowing the program to be run step by step for debugging purposes.

Caution : in this case of step by step test of the program if a subroutine is called, the

return of the subroutine cannot occur correctly (the calculator does not memorize the

return address of the subroutine).

29 cos - Cosine

The cos function calculates the cosine of an angle. The angle is entered in the defined

unit Deg, Rad or Grad.

Typing the INV prefix before the cos statement performs the opposite arccosine func-

tion. The result is an angle in the defined angular measurement.

The angle calculated by the arccosine function is between 0° and +180°. The input

value of the arccosine function must be between -1 and +1. If it is outside the specified

range, the display is limited to the valid range and an "E" error is indicated (display

flashes).

ET-57 Page 36

34 SUM - Add and subtract into a register

SUM adds the displayed number (X register) to register R0 to R9. A register number

from 0 to 9 is entered as an instruction parameter.

By specifying the INV prefix before the SUM instruction, the opposite function is

performed - subtracting a number from the data register R0 to R9.

35 y^x - Power and root

The instruction y^x raises the number Y (the first operand, in the stack of operations)
to the power expressed by another number X (the second operand, the number on the
display).

If the INV prefix is pressed first, the inverse operation, the Xth root, is performed. The

first operand of Y must be a non-negative number. If this is the lowest level of the

expression, the calculation can be repeated for another first operand by pressing =

repeatedly.

Example:

3 y^x 7 ... raise 3 to power 7 [2187]

2187 INV y^x 7 ... 7th root of 2187 (2187^(1/7)) [3]

36 Pause - Delay

The Pause command stops program execution for 0.25 seconds and displays the

contents of the register X.

37 Ins - Inserting an empty step in the program

The Ins key, used in programming mode, inserts an empty Nop instruction at the

program pointer position. The following steps are shifted downwards.

38 Exc - Exchange X with a register

Exc exchanges the displayed number (X register) with the contents of data register R0

to R9. A register number from 0 to 9 is entered as an instruction parameter.

Placing the INV prefix before the Exc instruction performs a similar function, but

instead of using registers R0 through R9, the number is swapped with registers R10

through R19. Registers R10 to R19 belong to the group of extended registers with a

precision reduced to 13 digits. When saving, the last 2 digits are removed from the

mantissa, and when loading, the mantissa is completed with 2 digits 0 at the end.

ET-57 Page 37

39 Prd - Multiply and Divide in a register

Prd is used to multiply the data registers R0 to R9 by the number displayed (register
X). A register number from 0 to 9 is entered as an instruction parameter.

By entering the INV prefix before the Prd instruction, the inverse function is performed

by dividing the data register R0 to R9 by the displayed number.

40 IxI - Absolute value

The IxI function adjusts the number to the absolute value (removes the negative sign
from the number).

If the INV prefix is specified before pressing IxI, the absolute value is not applied but a

sign test is performed on the number. If this number is less than 0, the result of the

operation is -1, if this number is greater than 0, the result is +1. If the number is 0, 0

remains.

41 BST - Back step in program

The BST (Back Step) key in programming mode decrements the program address

pointer by 1.

42 EE - Exponent mode

Press EE to activate exponent mode.

If the key is pressed while entering a number, it switches to entering the exponent.

At the same time, the display mode in scientific notation with an exponent is activated.

If the key is pressed outside the entry of a number, the display mode in scientific

notation with an exponent is activated and the entry of the exponent of the number is

launched. This feature is often used to remove hidden digits from a number, because

when you start typing, only the displayed digits are written to the display, not the full

exact value of the number.

Press the INV prefix before pressing EE to exit exponent display mode. Another way to

exit exponent display mode is to press the CLR key.

Example:

pi Fix 4 EE INV EE INV Fix ... round PI number to 4 decimal places [3.1416]

43 (- Left parenthesis

The character (opens the calculation of part of the expression.

Parentheses can be used up to 7 levels.

44) - Right parenthesis

The character) closes the calculation of part of the expression.

ET-57 Page 38

45 : - Divide

The sign : divides the first operand by the second operand. If this is the lowest level of

the expression, the calculation can be repeated for another first operand by pressing =

repeatedly.

Pressing the INV prefix before pressing : executes the inverse function, i.e. the modulo

mod operation which returns the remainder after division. The modulo operation

divides the first operand Y (in the stack) by the second operand X (on the display),

converts the result to an integer, multiplies the second operand X by it, and subtracts

from the first operand Y. The result is the remainder after division. The result has the

same sign as the first operand.

Example :

2 . 2 : 0. 5 = ... divide 2.2 by 0.5 [4.4]

2 . 2 INV : 0 . 5 = ... calculates the remainder of 2,2 divided by 0,5 [0,2]

2 . 2 +/- INV : 0 . 5 = ... calculates the remainder of -2,2 divided by 0,5 [-0,2]

2 . 2 INV : 0 . 5 +/- = ... calculates the remainder of 2,2 divided by -0,5 [0,2]

2 . 2 +/- INV : 0 . 5 +/- = ... calculates the remainder of -2,2 divided by -0,5 [-0,2]

46 Nop - No operation

The Nop (No Operation) command is an empty command that does not perform any

operation. It is only used to fill an unused step in the program.

47 Del - Delete a program step

The Del (Delete) key, used in programming mode, deletes a step from the current pro-
gram position. The following steps are then shifted upwards..

48 Fix - Number of decimal places

Using the Fix key, the number displayed on the screen is rounded to the number of

decimal places

specified. The number 0 to 8 is entered as a parameter, representing the number of

decimals after the decimal point 0 to 8.

In rounding mode, the number is padded from the right with zeros, up to the specified

number of decimal places. Entering the sequence INV Fix or Fix 9 disables rounding. In

this case, the number is displayed with full precision and trailing leading zeros are

suppressed.

Rounding only affects the display of the number. Internally, the number (X register)

continues to be stored in full. If it is necessary to actually remove the hidden digits, this

can be done using the EE key (see 42 Exponent mode, EE).

The rounding mode set also affects how very small numbers are displayed. If rounding

is on and exponent mode is not on, the screen displays zeros for small numbers, even

though the valid digits have passed the right edge of the screen. If rounding is not

enabled, the calculator will switch to displaying the exponent if the exponent is less

than -3.

ET-57 Page 39

49 Int - Integer part

The Int key is used to remove the digits after the decimal point of the number or to

reduce the number to an integer.

The function has the same meaning as rounding towards zero.

If the INV prefix is used before the Int command, the inverse function is executed

(Frac) by removing the integer part of the number and keeping only the decimal part.

Example :

2. 3 int ... integer part of 2.3 [2]

2. 3 +/- Int ... integer part of -2.3 [-2]

2. 3 INV Int ... decimal part of 2.3 [0.3]

2. 3 +/- INV Int ... decimal part of de -2.3 [-0.3]

50 Deg - Degrees

The Deg key switches trigonometric function calculations to degrees (a full angle is

360°).

51 GTO - Go to a label (or address)

GTO allows you to perform an unconditional jump in a program. Its parameter is a

numeric code from 0 to 9 corresponding to a label (Lbl) of the program.

By entering the Pgm command in the program before the GTO command, a jump to the

label in another program area can be performed.

When the GTO instruction is used in run mode, the program pointer is positioned on the

selected label.

By pressing the INV prefix before the GTO instruction, the pointer in the program can

be moved to an absolute address, which is entered as a 2-digit numeric code from 00 to

49. This function cannot do part of the program, it is executed immediately, and makes

it possible to move the program pointer both in execution mode and in programming

mode.

The GTO key has another special function: if you hold it down while the program is

running, the display will scroll through the contents of the display (X register) on the

bottom line, and the address of the step executed on the upper line. However, this

tracking slows down the program considerably.

55 x - Multiply

The x key is used to multiply a first operand by a second operand. If this is the lowest

level of the expression, the calculation can be repeated for another first operand by

repeatedly pressing =.

ET-57 Page 40

56 Dsz - Program Loop after decrement

The Dsz instruction is used to execute a program sequence iteratively using a loop

according to a number of passes specified in the R0 register.

The Dsz function consists in the fact that it decrements (decreases by 1) the register

R0 and stops looping as soon as it reaches zero, it ignores the next command and

continues the operation at the next step. If zero is not reached (ie the loop has not yet

terminated), the command following the Dsz command is executed. Typically, Dsz is

followed by the GTO command, which returns to the start of the loop label.

If the INV prefix is given before the Dsz instruction, the opposite direction of the

instruction is executed - the next instruction is skipped if the decrement result is not

zero. This variant is generally used at the beginning of the loop. When the loop counter

reaches zero, the next statement, which is usually a loop statement GTO, is executed,

Dsz handles the R0 register and works more precisely as follows :

If the value contained in register R0

• is greater than 0 before the operation, the register value is decreased by 1.
• is less than 0, the value is increased by 1.
• is equal to 0, the value remains unchanged.

If the result of the operation is zero or the operation has crossed the zero boundary, the

operation for zero is performed according to the selected function.

Which means that if the decrement/increment result did not reach zero, the loop

repeats (the next instruction is executed). With the INV prefix, a jump is performed on

the contrary if the result of the operation reaches zero (or exceeds it).

Example (factorial of a number) :

 ... activate programming mode

00 ... Program start label

01 ...stores the entered number in the R0 register

02 ... initialization for product calculation

03 ... label of the beginning of the loop

04 ...multiplies the X register by R0

09 ... decrement R0, test if zero and loop otherwise

11 ... end of program

 ... exit programming mode

 ... test, factorial of 12 [479001600]

ET-57 Page 41

57 STO* - Indirect storage of a register

STO* stores the contents of the X (display) register in a data register in the same way

as the STO instruction.

On the other hand, instead of using an instruction parameter as destination register

number, the destination register number is contained in register R8.

All data registers R0 to R79 can be addressed indirectly in this way.

If the INV prefix is given before the instruction, the destination register number is

contained in the R9 register (alternative index).

Registers R10 to R79 belong to the group of extended registers with a precision

reduced to 13 digits.

Saving deletes the last 2 digits of the mantissa.

Entering address -1 to -256 (negative number) in register R8 (or R9) with instruction

STO* (or INV STO*) sends a byte with value 0 to 255 (display number) at port 0 to 255

(depending on the content of register R8, R9) to the connected external device. (See

External Devices and Ports).

This function cannot be used with the ET-57B calculator variant.

58 RCL* - Indirect recall of a register

RCL* recalls a number from a data register in the same way as the RCL instruction.

On the other hand, instead of using an instruction parameter as the number of the

original register of the number to be recovered, the number of the original register is

contained in the register R8.

All registers from R0 to R79 can be addressed indirectly in this way.

If the INV prefix is given before the instruction, the original register number is

contained in the R9 register (alternative index).

Registers R10 to R79 belong to the group of extended registers with a precision

reduced to 13 digits.

The mantissa is completed by 2 digits 0 at the end.

Entering the address -1 to -256 (negative number) in the R8 (or R9) register with the

RCL* (or INV RCL*) instruction, reads a byte with the value 0 to 255 from port 0 to 255

(depending on the content of register R8, R9) of a connected external device. (See

External Devices and Ports).

This function cannot be used with the ET-57B calculator variant.

59 SUM* - Indirect add into a register

The SUM* instruction adds (or subtracts with INV) a number to the destination register

in the same way as the SUM instruction, only instead of the instruction parameter, the

destination register number is held in the R8 register.

Registers R10 to R79 belong to the group of extended registers with a precision redu-

ced to 13 digits.

The mantissa is completed by 2 digits 0 at the end.

ET-57 Page 42

60 Rad - Radians

The Rad key toggles trigonometric function calculations in radians (a full angle is 2*pi

rad).

61 SBR - Subroutine call

The SBR (Subroutine) key is used to call a subroutine using as a parameter the numeric

code from 0 to 9 of the called label.

By specifying the Pgm command in the program before the SBR command, a subrou-

tine from another program space is called.

If the SBR instruction is used in run mode, the subroutine is executed immediately.

When calling a subroutine, the address of the instruction following the SBR instruction

code is first stored in the address stack. The address stack has a capacity limited to 7

subroutines.

The subroutine ends with the INV SBR instruction which ensures the return of the

subroutine to the calling program thanks to the original address which is taken from the

address stack.

If the subroutine was launched from another program space, control returns to the

original program space. If the subroutine was started from the keyboard, execution

stops.

65 - - Substraction

The minus sign (-) is used to subtract the operand entered after the sign from the

operand entered before the sign. If this is the lowest level of the expression, the

calculation can be repeated for another first operand by pressing = repeatedly.

Entering the prefix INV before the minus sign (-) deactivates debug mode (display of

the mantissa of the number). Debug mode is activated by the INV + instruction.

66 x=t - Equality test

The instruction x=t makes it possible to compare the register X (content of display)

with the auxiliary register T (loaded by the key x<>t , corresponds to the register R7).

If the registers match, the next instruction is executed. Otherwise, the program jumps

to the next instruction.

If the INV prefix is specified before the x=t code, the inverse function is executed - the

execution of the following command if the X register is different from the T register.

67 Inc* - Register Increment/Decrement

The Inc* instruction allows to increment/decrement the content of a data register in
the same way as the Inc instruction, only instead of the instruction parameter speci-
fying the register number, this register number is contained in the R8 register.

By placing the INV prefix before the Inc* instruction, instead of the increment of 1 of

the target register, the decrement of -1 is performed.

ET-57 Page 43

70 Grd - Gradians

The Grd key switches trigonometric function calculations to grads (a full angle is 400

gon).

68 Exc* - Indirect exchange X with a register

The Exc* instruction is used to exchange the displayed number with the contents of a

data register similar to the Exc instruction.

On the other hand, instead of using an instruction parameter as the number of the

register containing the value to be exchanged, the number of this register is contained

in the register R8.

All data registers R0 to R79 can be addressed indirectly in this way.

If the INV prefix is given before the instruction Exc*, the register number is taken from

the data register R9 (alternative index).

69 Prd* - Multiply in an indirect register

The Prd* instruction is used to multiply or divide (with the INV prefix) the contents of a

data register by the entered number in the same way as the Prd instruction.

On the other hand, instead of using an instruction parameter as the number of the

register containing the value to be multiplied, the number of this register is contained in

the register R8.

All registers from R0 to R79 can be indirectly addressed in this way.

71 RST - Reset step address

The RST key is used to reset the program pointer, ie to reset the pointer to 0 (not 00).

The selected program area remains unchanged.

75 + - Addition

The plus sign (+) adds the operand entered after the sign to the operand entered before

the sign. If this is the lowest level of the expression, the calculation can be repeated for

another first operand by pressing = repeatedly.

Entering the INV prefix before the plus sign (+) activates debug mode (displays the

mantissa of the number). Debug mode can be disabled by the INV - instruction.

ET-57 Page 44

77 Inc. - Increment/Decrement a Register

The Inc instruction increments (increases by 1) the content of a data register R0 to R9,

whose number 0 to 9 is given as an instruction parameter. If the INV prefix is given

before the Inc instruction, the reverse operation is performed - decrement the register

(decrease by 1).

76 x>=t - Greater than or equal to

The instruction x>=t makes it possible to compare the register X (content of display)

with the auxiliary register T (loaded by the key x<>t, corresponds to the register R7).

If register X is greater than or equal to register T, the instruction following the

instruction x>=t is executed. Otherwise, the next command is ignored.

If the INV prefix is specified before the x>=t code, the inverse function is executed -

the execution of the following command if the X register is smaller than the T register.

78 Pgm - Program space selection

A program area can be selected with the Pgm key. The program area is selected by

entering the number 0 to 9 as a parameter of the Pgm instruction.

There are a total of 10 independent program areas available in the calculator, marked

with numbers from 0 to 9.

Each program area has 50 program steps, i.e. a total of 500 program steps in all.

When switching the program area in run mode (from the keyboard), the program

pointer is simultaneously reset to the start of the newly selected program area (step

00).

Entering the Pgm command into a program does not change the program space

permanently, only temporarily for a later GTO or SBR instruction.

In this way, subroutines can be called or jumps between program areas can be made.

The GTO and SBR instructions do not have to immediately follow the Pgm instruction.

ET-57 Page 45

79 Rand - Random number generator

The Rand function calculates a random number greater than or equal to 0 and less than

1.

The LCG (Linear Congruential Generator) and the formula

Rand = (Seed - (Seed * 214013 + 2531011) mod 4294967296) / 4294967296

are used to calculate the random number.

The generator seed has a range of 32 bits. The generated number is converted to a float

by dividing by 2^32. This ensures that the resulting random number is between 0 and

1, including zero but excluding the value 1.

The random number generator keeps counting each time it is used, which ensures that

the sequence of numbers generated does not repeat (more precisely - the repeat

interval is very large, 2^32 numbers). Each time the calculator is turned on, the

generator seed is read from the EEPROM and a new value is stored. This ensures that

generated sequences do not repeat after the calculator is powered on.

Example :

 ... activate programming mode

00 ... Program start label (roll the die)

01 ... generates a number between 1 and 6

08 ... integer part of the number

09 ... end of program

 ... exit programming mode

 ... test, roll the dice

The test can be completed with a counting test of the number of outputs of

each number (1 to 6) and the counting of the number of throws per second.

ET-57 Page 46

81 R/S - Program start and stop

The R/S key can be used to start or stop a running program.

On startup, the program begins to run from the current program pointer (the current

address can be found by switching to LRN programming mode).

After stopping, the program may not always be able to continue running - the

subroutine's return address may be lost.

80 Var - Scatter

The Var statement calculates the variance of the 'x' and 'y' values entered using the

statistical function Stat. Pressing Var displays the variance of the 'y' values, and using

INV before the Var statement displays the variance of the 'x' values.

The variance is calculated by the formula :

 var = sum(y^2)/N - (sum(y)/N)^2

The square root of the variance gives the standard deviation ‘s’.

After 10 minutes of testing, the R1 to R6 registers contain roughly similar numbers
(similar case numbers), the R0 and R7 registers must contain 0.
 (for example: 0, 2762, 2727, 2834, 2701, 2671, 2763, 0, which corresponds to the hy-
pothesis of a generation speed of 27 dice rolls per second and a fairly homogeneous
distribution between 1 and 6.)

 ... activate programming mode

10 ... Program start label (cumulative number of launches)

11 ... calls the dice rolling program

12 ... stores the die number in R8 for use as an index

13 ... register increment indexed by die number (R8)

14 ... loop to continue counting

 ... exit programming mode

 ... initialization of all data registers

 ... start counting test

 ... wait several minutes to stop the program

 check the content of registers R0 to R7

Continued Example :

ET-57 Page 47

85 = - Perform the calculation

The = sign is used to close open arithmetic operations and to perform calculations.

By repeatedly pressing the = key, the last operation performed at the lowest level can

be repeated. The first operand is the displayed number, the second operand is the

number entered during the operation as the second operand (or second result of the

intermediate calculation).

Caution: Some original TI-57 programs, for which repetitive operations are not allowed,

use the = key more than once to cause an error. When importing a program, it may be

necessary to check and solve this case.

Example:

5 x 6 = [30] ... 5 x 6 = 30

7 = [42] ... 7 x 6 = 42 the second operand (6) is reused

9 : 3 = [3] ... 9 / 3 = 3

12= [4] ... 12 / 3 = 4 the second operand (3) is reused

84 +/- - Change of sign

The +/- key changes the sign of the number on the display.

Using it while typing the exponent of a number in scientific notation, changes the sign

of that exponent.

83 . - Decimal point

The dot (.) is the separator for whole digits and decimal digits in a number.

In scientific notation, if this key is pressed while entering the exponent of a number,

editing reverts to entering the mantissa of the number.

86 Lbl - Labels

The Lbl instruction can be used to mark the beginning of a sequence in the program like

a label.

In each program area, 10 labels can be used, denoted Lbl 0 to Lbl 9. The label number

is specified as numeric parameter 0 to 9 of the Lbl instruction.

You can jump to the program location marked with a label using the GTO jump

instruction or the SBR subroutine call instruction.

With the use of the Pgm program space select statement, jumps and subroutine calls

can also be made between program spaces.

ET-57 Page 48

87 x! - Factorial

The x! key is used to calculate the factorial. The factorial of a number is obtained by

multiplying the successive values 1, 2, 3, ... up to the specified number. The number

entered is an integer between 1 and 69.
(69! =
17112245242814131137246833888127283909227054489352036939364804092325
7279754140647424000000000000000 [99 digits])

Example :

6 x! ... factorial of the number 6 [6! = 1*2*3*4*5*6 = 720]

88 Stat - Statistics

The Stat instruction is used to enter data that can be used for statistical calculations

(mean, variance).

The instruction uses data registers R0 through R5 to store the intermediate calculation.

Before use, it is advisable to first reset the registers with the INV C.t command, which

resets all data registers R0 to R79.

Use of data registers :

When entering statistical data in pairs (x, y), the value 'x' is entered first and by

pressing x<>t it is transferred to the T register (register R7).

Then the 'y' value is entered and by pressing Stat the 'x' and 'y' values are saved.

The display (in the X register) will show the number of 'n' elements inserted so far. The

content of the T register (the value of 'x') is increased by 1 with the Stat instruction,

because if the values of 'x' must increment by 1, it is not necessary to insert them, it is

enough to insert the initial value of 'x' into the T register, then write only the 'y' values.

If it is not necessary to evaluate pairs of values (x, y), just enter the value 'y'.

If the INV prefix is used before the Stat instruction, the entered value will be

subtracted. This is how you can correct a wrong value - enter the 'x' value of the wrong

data, press x<>t, enter the 'y' value of the wrong data and press INV Stat to delete the

wrong data. The content of register T (with the value 'x') is then decremented by 1.

Then the entry of new correct data can be continued. If it is not necessary to evaluate

pairs of values (x, y), it is sufficient to enter only the value 'y' of the erroneous data.

• R0 ... number of elements N

• R1 ... the sum of y • R3 ... the sum of x

• R2 ... the sum of y^2 • R4 ... the sum of x^2

• R5 ... the sum of x*y

and R7 ... T register

ET-57 Page 49

INV C.t ...initializing data registers

[1] ... 1st data 96

[2] ... 2nd data 81

[3] ... 3rd incorrect data

[2] ... cancellation of the 3rd data

[3] ... 3rd corrected data 87

[4] ... 4th data 70

[5] ... 5th data 93

[6] ... 6th data 77

[84] ... average of the entered values

[81,333...] ... Deviation

[9.0185...] ... standard deviation

[504] ... sum of all values

Example :

89 Mean - Mean

The Mean statement calculates the average of the 'x' and 'y' values entered using the

statistical function Stat.

After pressing Mean, the display shows the average of the 'y' values.

Typing the INV prefix before the Mean statement calculates the average of the 'x'

values.

ET-57 Page 50

15. Sample programs

1. Roll the Dice (ET-57 Version)

The program uses the internal random number generator.

Use :

 ... generates a random integer between 1 and 6

 ... next number

00 86 1 Lbl 1 subroutine start label

01 43 (calculates (6 x Rand + 1), random number 1..6.9999

02 6 6

03 55 x

04 79 Rand random number from 0 to 0.99999...

05 75 +

06 1 1

07 44)

08 49 Int integer part of the number

09 -61 INV SBR end of subroutine

10 51 1 GTO 1 next number with R/S

Program :

ET-57 Page 51

2. Roll the Dice (TI-57 Version)

Since the original TI-57 did not have a Rand (random number generator) function, the
latter's dice-rolling program cost twice the number of steps, plus the use of a register.

(this program is also applicable, with some minor variations, to the successor models of

the TI-57, namely the TI-57 LCD, TI-57 II and TI-62).

Register :

R0 ... Random number generator seed.

Use :

Program :

x ... initialize the number generator with a seed = x

 ... generates a random integer between 1 and 6

 ... next number

00 86 1 Lbl 1 subroutine start label

01 43 (

02 43 (\

03 33 0 RCL 0 | Recall seed

04 75 + |

05 30 pi |

06 44) |

07 35 y^x > Calculation of frac((Seed + pi)^8)

08 8 8 |

09 44) |

10 43 (|

11 -49 INV Int /

12 32 0 STO 0 Stores the new seed (Seed)

13 55 x \

14 6 6 |

15 75 + > Dice value from 1 to 6

16 1 1 |

17 44) /

18 49 Int

19 -61 INV SBR

20 51 1 GTO 1 next number with R/S

ET-57 Page 52

3. LED light snake

The program controls an external device - the ERAM100 effect frame. By writing a byte

to port 0, 8 LEDs are controlled. The byte written is a combination of bits lighting up

individual LEDs, like the sum of the weights of the bits :

Registers :

R5 ... save snake position

R8 ... index, -1 is the index of port 0 (output to LED)

Program :

 ... start the snake :

 3 bright LEDs run along the LED strip

00 7 7 bits value of snake appearance (LED 1,2,3 lights up)

01 32 5 STO 5 Stores snake's position

02 1 1

03 84 +/-

04 32 8 STO 8 sets the index of R8 to -1, which is the address of port 0

05 2 2

06 5 5

07 6 6

08 22 x<>t store 256 in T for pattern overflow test

09 86 9 Lbl 9 cycle start label

10 33 5 RCL 5 recall of the position of the snake

11 55 x

12 2 2

13 85 = (position x 2) corresponds to a shift of 1 bit to the left

14 -76 INV x>=t location < 256?

15 51 8 GTO 8 no position overflow, go to Lbl 8

16 65 -

17 2 2

18 5 5

19 5 5

20 85 = rotation: - 256 (remove bit 7) + 1 (add bit 0)

21 86 8 Lbl 8

22 32 5 STO 5 stores the snake's new position

23 57 STO* storage at address -1 sends the byte to port 0

24 36 Pause small pause of 0.25 seconds

25 51 9 GTO 9 loop repeat

• bit 0 ... weight 1 ... LED 1 • bit 4 ... weight 16 ... LED 5

• bit 1 ... weight 2 ... LED 2 • bit 5 ... weight 32 ... LED 6

• bit 2 ... weight 4 ... LED 3 • bit 6 ... weight 64 ... LED 7

• bit 3 ... weight 8 ... LED 4 • bit 7 ... weight 128 ... LED 8

Use :

ET-57 Page 53

4. Calculation of the polynomial

The program calculates the value of the polynomial
 P(x) = a0 + a1*x + a2*x^2 + ... an*x^n

of order n for the given x, if the coefficients a0 to an are entered.

Registers :

R0 ... Dsz iteration counter
R6 ... number of coefficients N (= polynomial order n + 1)
R8 ... index register
R9 ... input x

R10 and following ... polynomial coefficients a0, a1, ... an (N coefficients)

Use :

Program :

Example, polynomial P(x) = 2 - 3x + x^2 :

 ... start entering the coefficients

 ... enter the coefficient a0 = 2

 ... input of coefficient a1 = -3

 ... coefficient input a2 = 1

 ... calculation of the value of the polynomial P(2) = 0

 ... calculation of the value of the polynomial P(-1) = 6

 ... calculation of the value of the polynomial P(15) = 182

00 15 CLR reset

01 32 6 STO 6 reset of the number of coefficients N

02 9 9 index of the first coefficient 10 - 1 = 9

03 32 8 STO 8 index registry settings

04 86 9 Lbl 9 loop labels for entering coefficients

05 81 R/S stop the program, wait for the next coefficient

06 77 8 Inc 8 increment index register R8

07 57 STO* store the coefficient

08 77 6 Inc 6 incrementing the number of coefficients N

09 51 9 GTO 9 continue with the next coefficient

ET-57 Page 54

10 86 8 Lbl 8 calculation repeat label

11 81 R/S display the result and wait for another 'x'

12 86 1 Lbl 1 start label of the polynomial quantization function

13 32 9 STO 9 save 'x' entered

14 43 (

15 33 6 RCL 6 number of coefficients N

16 32 0 STO 0 Dsz counter preparation

17 75 +

18 9 9 N + 9 = index of the last coefficient an

19 44)

20 32 8 STO 8 R8 index register setting

21 58 RCL* recall the last coefficient an

22 86 7 Lbl 7 loop start label

23 -56 INV Dsz decrement R0 and skip instruction when > 0

24 51 8 GTO 8 loop if R0 differs from 0 otherwise end of loop

25 -77 8 INV Inc 8 decrement index register R8

43 (

27 14 CE Restore last X register

28 55 x

29 33 9 RCL 9 Calculation Display * 'x' entered

30 75 +

31 58 RCL* addition of another coefficient ai (from index R8)

32 44)

33 51 7 GTO 7 continue the loop

ET-57 Page 55

5. Complex numbers

Arithmetic of complex numbers.

When entering a number, enter the real part, press x<>t, and enter the imaginary part.

In the T register (register R7) there will be the real part of the number, and in the X

register (display) the imaginary part.

When reading the result, after pressing x<>t you will read the real part, after pressing

a second time on x<>t you will read the imaginary part.

For 2-operand functions, specify the first operand (X) using SBR 1.

Then specify the second operand (Y) and call the function.

The result simultaneously becomes the new first operand (X).

For 1-operand functions, specify the operand (Y) and call the function.

The original first operand (X) remains unchanged.

The program occupies 2 program spaces, Pgm 0 and Pgm 1.

Note : The ln(Y) and exp(Y) functions change the angular measure to radians.

Use :
Program space Pgm 0 :

 ... input of the first operand

 ... adding the second operand X+Y

 ... subtraction of the second operand X-Y

 ... multiplication by the second operand X*Y

 ... division by the second operand X/Y

 ... negation -Y

Note: The SBR 5 function calls the SBR 1 function from Pgm 1.

Program space Pgm 1 :

 ... inverse of 1/Y

 ... square of Y^2

 ... square root of sqrt(Y)

 ... natural logarithm of ln(Y)

 ... natural exponent exp(Y)

ET-57 Page 56

Example : calculates exp(((2+3i) - (1-i)) / (4+5i))

Registers :

R1 ... 'a', the real part of the first operand of X

R2 ... 'b', the imaginary part of the first operand of X

R3 ... 'c', the real part of the second operand of Y

R4 ... 'd', the imaginary part of the second operand Y

R7 ... T register

 ... selection of program space 0

 ... input of the first operand (2+3i)

 ... subtraction of the second operand (1-i)

[1]

[4] ... intermediate result = (1+4i)

 ... division by operand (4+5i)

[0.5853...]

[0.2682...] ... intermediate result = (0.5853...+0.2682...i)

 ... selection of program space 1

 ... natural exponent exp (Y)

[1.7314...]

[0.4760...] ... result (1.7314... + 0.4760..i)

ET-57 Page 57

 ... selection of program space 0

Program :

• calculation of the subtraction of the second operand X-Y

00 86 3 Lbl 3 X-Y function label
01 61 6 SBR 6 call the negation function -Y

• calculation of the second operand X+Y
X + Y = (a + c) + (b + d)*i

02 86 2 Lbl 2 X+Y function label
03 34 2 SUM 2 add the imaginary part of Y to X
04 33 2 RCL 2 recall of the imaginary part of X
05 22 x<>t exchange of real <> imaginary parts
06 34 1 SUM 1 add the real part of Y to X
07 33 1 RCL 1 recall of the real part of X
08 22 x<>t exchange of real <> imaginary parts

• entering the first operand X
09 86 1 Lbl 1 X function label
10 32 2 STO 2 store the imaginary part of X
11 22 x<>t exchange of real <> imaginary parts
12 32 1 STO 1 store the real part of X
13 22 x<>t exchange of real <> imaginary parts
14 -61 INV SBR

• calculation of the division by the second operand X/Y

15 86 5 Lbl 5 X/Y function label
16 78 1 Pgm 1 choice of program space 1
17 61 1 SBR 1 inverse function call of 1/Y

ET-57 Page 58

• calculation of the multiplication by the second operand X*Y

X * Y = (a*c - b*d) + (a*d + b*c)*i

18 86 4 Lbl 4 X*Y function label
19 32 4 STO 4 storage of the imaginary part Y (=d)
20 22 x<>t exchange of real <> imaginary parts
21 43 (
22 32 3 STO 3 storage of the real part of Y (=c)
23 55 x
24 33 1 RCL 1 real part of X (=a)
25 65 -
26 33 2 RCL 2 recall imaginary part of X (=b)
27 55 x
28 33 4 RCL 4 recall imaginary part of Y (=d)
29 44) calculation (a*c - b*d) real part
30 22 x<>t exchange of real <> imaginary parts
31 43 (
32 33 1 RCL 1 recall of the real part of X (=a)
33 55 x
34 33 4 RCL 4 recall imaginary part of Y (=d)
35 75 +
36 33 2 RCL 2 recall of the imaginary part X (=b)
37 55 x
38 33 3 RCL 3 recall of the real part of Y (=c)
39 44) calculation (a*d + b*c) imaginary part
40 51 1 GTO 1 store result in X

• Change operator sign -Y
41 86 6 Lbl 6 -Y function label
42 84 +/- negation of the imaginary part
43 22 x<>t exchange of real <> imaginary parts
44 84 +/- negation of the real part
45 22 x<>t exchange of real <> imaginary parts
46 -61 INV SBR

ET-57 Page 59

 ... selection of program space 1

• inverse of operand 1/Y
1/Y = (c - d*i)/(c^2 + d^2)

00 86 1 Lbl 1 1/Y function label

01 43 (

02 84 +/- change sign imaginary part of Y (=d)

03 45 :

04 43 (

05 23 x^2 j^2

06 75 +

07 22 x<>t

08 32 3 STO 3 storage of the real part of Y (=c)

09 23 x^2 c^2

10 44) calculation (c^2 + d^2)

11 -39 3 INV Prd 3 divide c by (c^2 + d^2)

12 44) end of calculation of the imaginary part

13 22 x<>t exchange of real <> imaginary parts

14 33 3 RCL 3 reminder of the new real part

15 22 x<>t exchange of real <> imaginary parts

16 -61 INV SBR

• squaring operand Y^2

17 86 2 Lbl 2 Y^2 function label

18 43 (

19 -27 INV P->R convert to polar coordinates

20 55 x the angle will be multiplied by *2

21 22 x<>t exchange of real <> imaginary parts

22 23 x^2 squared radius

23 86 9 Lbl 9

24 22 x<>t exchange of real <> imaginary parts

25 2 2

26 44) angle * 2 (or angle / 2) is calculated
here

27 27 P->R convert to cartesian coordinates

28 -61 INV SBR

• square root operand sqrt(Y)

29 86 2 Lbl 3 sqrt(Y) function label

30 43 (

31 -27 INV P->R conversion to polar coordinates

32 45 : the angle will be divisible by /2

33 22 x<>t exchange of real <> imaginary parts

34 24 Vx square root of radius

35 51 9 GTO 9 realization of the function

ET-57 Page 60

• natural logarithm of the operand ln(Y)

36 86 4 Lbl 4 ln(Y) function label

37 60 Rad switch to radians

38 -27 INV P->R converts to polar coordinates

39 22 x<>t exchange of real <> imaginary parts

40 13 lnx logarithm of the radius

41 22 x<>t exchange of real <> imaginary parts

42 -61 INV SBR

• natural exponent of the operand exp(Y)

43 86 5 Lbl 5 exp(Y) function label

44 22 x<>t exchange of real <> imaginary parts

45 -13 INV lnx exponent exp(x)

46 22 x<>t exchange of real <> imaginary parts

47 60 Rad switch to radians

48 27 P->R converts to Cartesian coordinates

49 -61 INV SBR

ET-57 Page 61

6. Ramanujan approximation of the factorial x!

Calculating the factorial (including decimals) using the Ramanujan approximation.

Accuracy achieved: Values around 1 precision 3 digits, values around 69 (maximum)

precision 10 digits.

Formula : x ! = sqrt(pi) * (x/e)^x * (((8*x + 4)*x + 1)*x + 1/30)^(1/6).

Use :

x ... calculates the factorial x!

x’ ... calculates for another number

Register :

R1 ... entered value of x

Examples :

 ... 1! = 1,00028..., the correct valmue must be 1,0

 ... 1.2 ! = 1,101987..., must be 1,101802...

 ... 10 ! = 3628800.3116, must be 3628800

 ... 69 ! = 1,7112245244+98, must be 1,7112245243+98

ET-57 Page 62

00 86 1 Lbl 1 start of program

01 43 (

02 43 (

03 32 1 STO 1 store input value

04 45 :

05 1 1

06 -13 INV lnx calculation of the constant e

07 44) calculation of x/e

08 35 y^x

09 33 1 RCL 1 calculation of (x/e)^x

10 55 x

11 30 pi

12 24 Vx pi square root calculation

13 55 x

14 43 (

15 43 (

16 43 (

17 8 8

18 55 x

19 33 1 RCL 1 calculation of 8 * x

20 75 +

21 4 4

22 44) calculation of (8*x + 4)

23 55 x

24 33 1 RCL 1

25 75 +

26 1 1

27 44) calculation of ((8*x + 4)*x + 1)

28 55 x

29 33 1 RCL1

30 75 +

31 3 3

32 0 0

33 25 1/x

34 44) calculation of ...*x + 1/30)

35 -35 INV y^x 6th root

36 6 6

37 44)

38 -61 INV SBR

39 51 1 GTO 1 repeat the calculation for another value

Program :

ET-57 Page 63

7. Stirling approximation of the factorial ln(x!)

Calculating the factorial (including decimals) using Stirling's approximation.

Accuracy achieved: Values around 1 3-digit precision, values around 69 (maximum x!)

10-digit precision, values around 200 15-digit precision.

Formula : ln(x!) = x*ln(x)+ln(sqrt(2*pi))-x+ln(sqrt(x+1/6+1/72/x-31/6480/x^2)).

Use :

x ... calculates the logarithm of the factorial ln(x!)

x’ ... calculates for another number

Register :

R1 ... entered value of x

Examples :

 ... 1! = 0.99990..., the correct value must be 1,0

 ... 1.2 ! = 1.10177..., must be 1,101802...

 ... 10 ! = 3628800.1322, must be 3628800

 ... 69 ! = 1.7112245243+98, correct value

x ... calculates the factorial x!

x’ ... calculates for another number

 ... ln(1000!) = 5912.1281785, correct value

ET-57 Page 64

Program :

• calculation of ln(x!)

0 81 1 Lbl 1 start of program ln(x!)

1 43 (

2 32 1 STO 1 store the entered value of x

3 55 x

4 13 lnx calculation of x*ln(x)

5 75 +

6 43 (

7 2 2

8 55 x

9 30 pi

10 44)

11 24 Vx

12 13 lnx calculation of ln(sqrt(2*pi))

13 65 -

14 33 1 RCL 1 Recall x

15 75 +

16 43 (

17 33 1 RCL 1 Recall x

18 75 +

19 6 6

20 25 1/x number + 1/6

21 75 +

22 7 7

23 2 2

24 25 1/x

25 45 :

26 33 1 RCL 1 number + 1/72/x

27 65 -

28 3 3

29 1 1

30 45 :

31 6 6

32 4 4

33 8 8

34 0 0

35 45 :

36 33 1 RCL 1

37 23 x^2 number - 31/6480/x^2

38 44)

39 24 Vx square root of total

40 13 lnx

41 44)

42 -61 INV SBR

43 51 1 GTO 1 repeat the calculation for another value

ET-57 Page 65

• calculation of x! [i.e. e^ln(x!)]

44 86 2 Lbl 2
45 61 1 SBR 1 call function ln(x!)

46 -13 INV lnx exponent, x! = e^ln(x!)

47 -61 INV SBR

48 51 2 GTO 2 repeat the calculation for another value

ET-57 Page 66

8. Determining the zeros of a function

The program searches for zero crossings of the user function. The program occupies

program spaces Pgm 0 and Pgm 1. The user function is entered into program space

Pgm 2 and marked with label Lbl 0. The function can temporarily use register R7

(register T) and registers R10 and above.

The function first searches for a step interval dx = (xmax - xmin)/10 in which the sign of

y changes. It then refines the place of passage by dividing the interval by zero until the

deviation eps = dx/100000. The size of the dx step can be fixed at address 22. With a

large value of the dx step, certain zero crossings can be skipped, a small value of dx

slows down the search. The magnitude of the eps deviation can be set at address 27.

The eps value affects the zero crossing search accuracy achievable at the cost of

slowing down the search.

Use :

Examples :

zeros of the function f(x) = 4*sin(x) + 1 - x

The program for this function f(x) must be created in the Pgm 2 space (see following pages).

... user function: calculation of the value y for the given x

... input of the lower limit of xmin

... entering the upper limit of xmax

... determine the first zero crossing

... determine the next zero crossing

... selection of program space 0

... input of lower limit xmin = -3

... input of upper limit xmax = 3

... find the first zero crossing = -2.2100...

... find the second zero crossing = -0.3421...

... find the third zero crossing = 2.7020...

... fourth not found = 9.999+99

ET-57 Page 67

Registers :

R0 ... the y value of the tested function

R1 ... lower limit xmin

R2 ... upper limit of xmax

R3 ... delta interval dx

R4 ... x the beginning of the interval

R5 ... x end of interval

R6 ... x current

R7 ... T register, temporarily available for SBR 0

R8 ... eps deviation (minimum dx)

R9 ... current lower limit of xmin2

 ... selection of program space 0

Program :

• Calculation of the user function value

00 86 0 Lbl 0 subroutine 'function call'

01 78 2 Pgm 2 choice of program space 2

02 61 0 SBR 0 user function call

03 -61 INV SBR

• Entering the lower limit of xmin

04 86 1 Lbl 1 entry of the lower limit xmin

05 32 1 STO 1 stores the lower limit of xmin

06 -61 INV SBR

• Entering the upper limit of xmin

07 86 2 Lbl 2 entry of the upper limit of xmax

08 32 2 STO 2 stores the upper limit of xmax

09 -61 INV SBR

• Display error : next not found

10 86 9 Lbl 9 error display

11 15 CLR

12 25 1/x causes error 9.99999 99

13 86 8 Lbl 8

14 -61 INV SBR

ET-57 Page 68

• Subroutine to find the first zero

15 86 3 Lbl 3 first search for zero of the function

16 33 2 RCL 2 recall upper limit xmax

17 65 -

18 33 1 RCL 1 recall lower limit xmin

19 32 9 STO 9 stores lower limit xmin

20 85 = calculates difference (xmax - xmin)

21 45 :

22 1 1 <- size of the dx step

23 0 0

24 85 = calculates dx = interval/10

25 32 3 STO 3 stores delta dx interval

26 45 :

27 5 5 <- amplitude of the eps deviation

28 -18 INV log constant 100000

29 85 = calculates eps maximum deviation

30 32 8 STO 8 stores eps deviation

• Subroutine to find next zero

31 86 3 Lbl 4 another zero search function

32 33 2 RCL 2 recall upper limit of xmax

33 22 x<>t xmax in T

34 33 9 RCL 9 recall lower limit xmin updated

35 76 x>=t upper limit reached?

36 51 9 GTO 9 next passage not found

37 32 4 STO 4 store x interval start

38 75 +

39 33 3 RCL 3 dx delta interval reminder

40 85 =

41 32 9 STO 9 stores new xmin lower limit

42 32 5 STO 5 stores x at end of interval

43 61 0 SBR 0 calculates y at the end of the interval

44 32 0 STO 0 stores value of y at the end of the interval

45 33 4 RCL 4 recall x at start of interval

46 32 6 STO 6 stores new updated x

47 61 0 SBR 0 calculates y for the new updated x

48 78 1 Pgm 1 choice of program space 1

49 51 9 GTO 9 continuation of the function in space 1

 ... selection of program space 1

• Continuation of the search operation for the next zero

00 86 9 Lbl 9 continuation of the search for the next zero

01 19 C.t reset T

02 66 x=t is the value of y equal to 0?

03 51 8 GTO 8 zero value found

04 55 x

05 38 0 Exc 0 y_current * y_initial

06 85 =

07 -76 INV x>=t if multiple < 0, zero found

08 51 7 GTO 7 if zero found, refine result

09 78 0 Pgm 0 switch to program space 0

10 51 4 GTO 4 continue with next interval

ET-57 Page 69

• Loop to refine the result

11 86 7 Lbl 7 refining precision of zero found

12 33 4 RCL 4 x at start of interval

13 75 +

14 33 5 RCL 5 x at the end of the interval

15 85 =

16 45 :

17 2 2

18 85 = calculates center of the interval x

19 32 6 STO 6 stores new x updated

20 33 8 RCL 8 recall ps deviation

21 22 x<>t stores eps deviation in T

22 33 5 RCL 5 recall x at the end of the interval

23 65 -

24 33 4 RCL 4 recall x at start of the interval

25 85 = calculates interval length

26 -76 INV x>=t interval < epsilon?

27 51 6 GTO 6 if interval < epsilon, zero found OK

28 33 6 RCL 6 recall x updated (interval center)

29 78 2 Pgm 2 choice of program space 2

30 61 0 SBR 0 calculates y for the new x

31 55 x

32 33 7 RCL 0 recall previous y

33 85 =

34 19 C.t reset T

35 66 x=t y=0?

36 51 6 GTO 6 zero found

37 76 x>=t if product > 0, no sign change

38 51 5 GTO 5 no sign change, move to higher x

39 33 6 RCL 6 recall x updated (interval center)

40 32 5 STO 5 shift down, the middle will be the new end

41 51 7 GTO 7 continuation of the zero refinement loop

42 86 5 Lbl 5 label to move to a higher x

43 33 6 RCL 6 recall x updated (interval center)

44 32 4 STO 4 go up, the center will be a new beginning

45 51 7 GTO 7 continuation of the zero refinement loop

46 86 6 Lbl 6 OK result

47 33 6 RCL 6 recall result

48 78 0 Pgm 0 choice of program space 0

49 51 8 GTO 8 function return

ET-57 Page 70

 ... selection of program space 2

• example of user function f(x) = 4*sin(x)+1-x

00 86 0 Lbl 0 user function label : must be Lbl 0

01 43 (

02 32 7 STO 7 stores initial X

03 60 Rad switch to radians

04 28 sin \

05 55 x |

06 4 4 |

07 75 + > user function 4*sin(x)+1-x

08 1 1 |

09 65 - |

10 33 7 RCL 7 |

11 44) /

12 -61 INV SBR

ET-57 Page 71

 ... initialize operations and initialize program pointer

xmin ... entering the lower limit

xmax ... entering the upper limit

n ... input of the number of steps (an even number!) and calculation

9. Simpson's rule for integration

The program calculates the numerical integral of the user function by Simpson's

approximation. The program is stored in the program space Pgm 0, the user function is

created in the program space Pgm 1 under the label Lbl 0.

The specified number of steps n must be an even number.

Use :

Examples :

integral of the function f(x) = 1/(cos(x) + 2) in the nterval 0 to pi/2

The program for this function f(x) must be created in the Pgm 2 space (see following pages).

 ... selection of program space 0

 ... initialization operations and pointer reset (not 00)

 ... entering the lower limit

 ... entering the upper limit

 ... entry of the number of steps (even!)
 and calculation [0.6046..]

Result for 2 steps = 0.604998903 (3 digit accuracy)

Result for 4 steps = 0.604619709 (4 digit accuracy)

Result for 10 steps = 0.604600227 (6 digit accuracy)

Result for 20 steps = 0.604599815 (7 digit accuracy)

Result for 100 steps = 0.604599788 (10 digit accuracy)

Result for 200 steps = 0.604599788 (11 digit accuracy)

Result for 1000 steps = 0.604599788 (13 digit accuracy)

Result for 2000 steps = 0.604599788 (13 digit accuracy)

Reference result = 0.604599788

ET-57 Page 72

Registers :

R0 ... number of steps n, loop counter

R1 ... lower limit xmin

R2 ... step increment dx

R3 ... loss of the result of the integral y

 ... selection of program space 0

Program :

0 32 1 STO 1 stores the lower limit of xmin
1 81 R/S waiting for upper bound xmax
2 65 -
3 33 1 RCL 1 recall lower limit xmin
4 85 = calculates interval (xmax - xmin)
5 32 2 STO 2 stores the interval
6 81 R/S waiting for the number of steps
7 32 0 STO 0 stores number of steps n
8 -39 2 INV Prd 2 calculates step increment: interval / n,
9 61 9 SBR 9 calculates current x and y
10 32 3 STO 3 stores result of integral I
11 86 8 Lbl 8 start of calculation loop
12 -77 0 INV Inc 0 decrement the R0 index of the loop
13 61 9 SBR 9 calculates current x and y
14 55 x
15 4 4
16 85 = calculates y * 4
17 34 3 SUM 3
18 -56 INV Dsz decrement register R0, jump if > 0
19 51 7 GTO 7 go to end of loop when R0 = 0
20 61 9 SBR 9 calculates current x and y
21 55 x
22 2 2
23 85 = calculates y * 2
24 34 3 SUM 3
25 51 8 GTO 8 next step in the loop
26 86 7 Lbl 7 end of the loop
27 61 9 SBR 9 calculates current x and y
28 34 3 SUM 3
29 33 2 RCL 2 dx interval reminder
30 45 :
31 3 3 calculates increment dx / 3 * y
32 55 x
33 33 3 RCL 3 loss of result y
34 85 =
35 81 R/S stop, result display
36 86 7 Lbl 9 displays the calculation of current x and y
37 33 1 RCL 1 lower limit xmin
38 75 +
39 33 0 RCL 0 step counter
40 55 x
41 33 2 RCL 2 step increment dx
42 85 = current coordinate calculates x
43 78 1 Pgm 1 choice of program space 1
44 51 0 GTO 0 go to user function

ET-57 Page 73

 ... selection of program space 1

• example of user function f(x) = 1/(cos(x) + 2)

00 86 0 Lbl 0
01 60 Rad

02 29 cos

03 75 +

04 2 2

05 85 =

06 25 1/x

07 -61 INV SBR

ET-57 Page 74

10. Linear regression line

The program calculates the coefficients of the approximate linear regression line using

the method of least squares. The pair of values (X,Y) is entered using the statistical

function Stat. The regression line has the form y = m*x + b.

The coefficient 'm', i.e. the slope of the line, is calculated according to the formula

m = (sum(x*y) - sum(x)*sum(y)/N) / (sum(x^2) - somme(x)^2/ N).

The coefficient 'b', i.e. the displacement of the line in the Y direction, is calculated

according to the formula b = (somme(y) - m*somme(x))/N.

Use :

x ... calculation of y for a given value of x

y ... calculation of x for a given value of y

Enter the pairs (X,Y) using the key

 ... program pointer initialization (step 00)

 ... calculates the coefficient 'm'

 ... calculates the coefficient 'b'

The following functions can only be called after calculating 'm' and 'b'.

ET-57 Page 75

Example :

 ... clear all registers X, R0 à R79

 ... entry point 1 (101.3, 609)

 ... entry point 2 (103.7, 626)

 ... entry point 3 (98,6, 586)

 ... entry point 4 (99.9, 594)

 ... entry point 5 (97.2, 579)

 ... entry point 6 (100.1, 605)

 ... program pointer initialization

 ... calculates coefficient m = 7.4734325186

 ... calculates coefficient b = -148.5063762

 ... for X = 97 Y = 576,41657811

 ... for X = 104 Y = 628,73060574

 ... for Y = 580 est X = 97,479488091

... for Y = 630 est X = 104,16985425

Registers :

R0 ... number of elements N

R1 ... sum of y

R2 ... sum of y^2

R3 ... sum of x

R4 ... sum of x^2

R5 ... sum of x*y

R7 ... T-register

R8 ... calculated coefficient 'm'

R9 ... calculated coefficient 'b'

ET-57 Page 76

Program :

• calculation of 'm'

• calculation of 'b'

00 33 5 RCL 5 recall sum of x*y

01 65 -

02 33 3 RCL 3 recall sum of x

03 55 x

04 33 1 RCL 1 recall sum of y

05 45 :

06 33 0 RCL 0 recall number of items N

07 85 = (sum(x*y) - sum(x)*sum(y)/N)

08 45 :

09 43 (

10 33 4 RCL 4 recall sum of x^2

11 65 -

12 33 3 RCL 3 recall sum of x

13 23 x^2

14 45 :

15 33 0 RCL 0 recall number of items N

16 85 =

17 32 8 STO 8 memorization of the coefficient m

18 81 R/S program stop, display m

19 33 1 RCL 1 recall sum of y

20 65 -

21 33 8 RCL 8 recall coefficient m

22 55 x

23 33 3 RCL 3 recall sum of x

24 85 =

25 45 :

26 33 0 RCL 0 recall number of items N

27 85 =

28 32 9 STO 9 memorization of the coefficient b

29 81 R/S program stop, display b

ET-57 Page 77

• Calculation of y for a given value of x

• Calculation of x for a given value of y

30 86 1 Lbl 1
31 43 (

32 14 CE

33 55 x

34 33 8 RCL 8 recall coefficient m

35 75 +

36 33 9 RCL 9 recall coefficient b

37 44)

38 -61 INV SBR

39 86 2 Lbl 2
40 43 (

41 43 (

42 14 CE

43 65 -

44 33 9 RCL 9 recall coefficient b

45 44)

46 45 :

47 33 8 RCL 8 recall coefficient m

48 44)

49 -61 INV SBR

