PROGRAMMABLE CALCULATOR

User Manual

Programmable calculator RPN-1250

User manual

Calculator version 4.1 © Benoit Maag

June 2024

HHC 2018 : Repurposing Old TI Calculators
https://www.youtube.com/watch?v=mxwn67G2P60
Benoit Maag :
Repurposing a TI-1250 to create an RPN-1250 calculator

Sommaire

1 Keyboard layout 6
2 Overview 7
3 How to use the calculator 8
5 Programming 9
6 Keys and instructions 10
0... 9 Numbers 0 4 2 3 4 (5) 6 4 8 (2) 11
1.1 GSB
Subroutine call 11
RTN Return from subroutine 11
STO Go to a label 12
1.2 LBL Label12
TST Tests 12
BSUBack step13
1.3
Save in constant memory 13
LD Load from constant memory 13
SST Step forward 13
1.4 PSE Pause 13
VIEW View register 13
R/S Run / stop program 13
2.1 FShift key F14
G Shift key G 14
2.2 IPInteger part14
Fractional part 15
PRGN Programming 15
2.3 EEX
Entering an exponent of ten 15
NOP No operation 15
GHS Change of sign 15
2.4 FIX
Number of decimal places 16
SCI Scientific notation 16
$\stackrel{\circ}{\circ}$Division17
3.1 SIN
Sinus 17
ASINArcsinus173.2cosCosine17AcOS Arccosine17
3.3Tangent17
ATAN3.4STOScrolling the stack down21
Substraction21
5.1 $1 / x$Multiplicative inverse22
Exponentiation 22
Convert Inches to millimeters 22
Convert Millimeters to Inches 22
5.3Convert Miles to kilometers22
-km
5.4Last X24
Enter a number 24
7 Example programs 23
1 Forensics 23
2 Factorial 24
3 Fibonacci 25
4 Circle 26
5 Stirling 27
6 Binet 28
7 GCD 29
8 Birthday 30
9 Ramanujan 31
10 Trigo 34
Gravity 35
PI Day 36
Primer 37
Hilo 38
Fraction 39
Convert 40
8 Welcome to the RPN-1250 calculator © 2015 Benoit Maag 4142
Key features 43
Run mode 44
Program mode 45
Stack registers / Indirect addressing 46
Real Time Clock (RTC) RPN-1250+ Only 47Esc mode

1. Keyboard layout

The RPN-1250 keyboard has 24 keys.
The basic functions of each key are written in white below the key concerned.
The functions writed in orange above each key, on the left, are activated by preceding the press of the key concerned by a press of the F key.
The functions writed in blue above each key, on the right, are activated by preceding the press of the key concerned with two presses of the F key, i.e. the equivalent of \mathbf{G}.

2. Overview

Based on a Texas Instruments TI-1250 calculator, the RPN-1250 calculator has a 64 KB Microchip PIC 18F2680 flash chip with an 8-digit, 7-segment MAX7219 LED driver. The software is programmed in C with the Microchip MPLAB X IDE.
The RPN-1250 calculator has 98 program steps and 20 registers in volatile memory. These programs and registers can be saved, in programming mode, in three different constant memory areas.

Features:

- 4-level scientific RPN stack with conversions,
- 20 memories (0 to 9 and .0 to .9) with arithmetic store and recall,
- Possible backup of the stack and registers in the "constant" flash memory of the PIC,
- 98 programmable steps (like the HP-29C) with alphanumeric display of program,
- 3 program saving areas in the "constant" flash memory of the PIC,
- 20 labels (0 to 9 and .0 to .9),
- subroutines (GSB, RTN),
- 12 possible tests ($X=0, X<>0, X=y, X<>y, \ldots)$,
- PAUSE and VIEW functions,
- step by step execution (SST),
- conversions (in<>mm, mi<>km, lb $<>\mathrm{kg},{ }^{\circ} \mathrm{F}<>^{\circ} \mathrm{C}$),
- Speed ??approximately 8 times higher than an HP-41C...

Deviations from the HP-29C calculator :

- No increment or decrement instructions (ISZ, DSZ)
- No indirect addressing
- No absolute value (ABS) [replaceable by $x<0$? CHS]
- No polar/rectangular conversions

4. How to use the calculator

The RPN-1250 calculator is equipped with a single-line, 8-character (alpha)numeric LED display.
Power is provided by a 9 Volt 6LR61 battery and the calculator turns on and off using the switch located on its left :

- ON : positioned at the top,
- OFF : positioned at the bottom.

3 modes of use are possible:

- "Execution" mode

is the mode in which the calculator is used to make calculations and conversions or launch the execution of the program loaded in volatile memory.
The stack and the used registers, being in volatile memory, are reset each time the calculator is turned on, but can be kept in constant memory.

SV allows saving of the stack and registers in constant memory.
 allows you to reload the stack and registers from constant memory.

The execution of a program loaded in volatile memory is done

- either by positioning at the start of memory (step 00) via RTN then RNB launch execution (after entering the data required by the program) - either by positioning at the starting label of the program via foo following the label concerned (0 to 9 or .0 to .9) then R/S launch the execution (after entering the data required by the program)
- either by directly launching the program via GSB followed by the label concerned (0 à 9 ou .0 à .9) (after entering the data required by the program).

A program can also be executed step by step to check that it is functioning correctly. The launch is done in this case by positioning in the program either by RTN or by GTO and using SST to advance step by step.

- "Program" mode

is the mode in which programs are entered and can be edited.

- "Esc." mode

\Rightarrow is the mode in which the brightness can be adjusted.

\Rightarrow a display test can also be performed.
\Rightarrow and all alphanumeric characters can be viewed. G্CnS

5. Programming

Writing a sequence of keys into the program memory is called a program.
The program turns the calculator into a powerful tool.

The program memory consists of 4 independent program areas:

- Working memory which is memory for input and program execution.

This memory is volatile and is erased when the calculator is turned off..

- 3 backup memories in which working memory can be saved.

These 3 memories are constant and preserved when the calculator is turned off.

Each program area contains 98 program steps, so a total of 294 program steps are available in reserve.
20 labels, numbered 0 to 9 and .0 to .9 , can be used.

Programming mode is activated with the key PRGM.
The content of the program is displayed alphanumerically on the display line in the form of step number followed by the text of the instruction.

Keys and functions useful for programming :

8ST (Single Step) Increments the program pointer by 1 ("next step").
The SST key can also be used in "execution" mode.
In this mode, after pressing SST, the code of the current instruction is executed and the program pointer is positioned on the next step. (step-by-step testing of a program)

BST (Back Step) Decrements the program pointer by 1 ("previous step").

no (Insert)
key

PRGM (Program)

GTO (Go To)

RTN (Return) Return order after the execution of a subroutine called by GSB. RTN is placed at the end of the subprogram.

But RTN can be used in "execution" mode to return the program pointer to address 0 .

R/S (Run/Stop)
Starts the program or stops the program (used in "execution" mode).

Means "end of program" in programming mode.

6. Keys and instructions

Each instruction has a step address followed by a title corresponding to a sequence of presses on one or more keys to express it.

00... 09
 \square O... 9 - Numbers

Base digits in the range 0 to 9 are used to enter numbers.
They are also used to enter the mantissa of a number, enter the exponent, a memory register number, or a tag number.

The numbers are stored in the program with a code from 0 to 9 without leading zero.

1.1 G GSB E5b - Subroutine call

The GSB (GoSuB) key is used to call a subroutine using as parameter the numerical code from 0 to 9 or .0 to .9 of the called label.
If the GSB instruction is used in "execution" mode, the subroutine is executed immediately.
A subroutine ends with the RTN instruction to ensure the subroutine returns to the calling program.

Example:

G RTN rtn - Return from subroutine

A subroutine called via GSB ends with the RTN instruction which ensures the subroutine returns just after the calling GSB instruction.
In "execution" mode, RTN positions the program pointer on step 0.

GUO
 ELo - Go to a label

GTO allows you to perform an unconditional jump in a program. It has as parameter a numerical code from 0 to 9 or .0 to .9 corresponding to a label (LbI) of the program. When the GTO instruction is used in "execution" mode, the program pointer is positioned on the corresponding label.

Example:
Eto 8
.../...
LbL 8

1.2

 LbL - Label

The Lbl instruction can be used to mark the start of a sequence in the program as a label.
20 labels can be used from Lbl 0 to $\mathbf{L b} \mathbf{9}$ and from $\mathbf{L b l} .0$ to Lbl .9.
The label number is specified as numeric parameter 0 to 9 or .0 to .9 of the Lbl instruction.
You can jump to the labeled location in the program using the GTO jump instruction or the GSB subroutine call instruction..

TST il=

The test instructions allow you to compare the \mathbf{X} register (display contents) with either the value zero (0) or with the \mathbf{Y} register.
If the test is satisfied, the instruction following the test instruction is executed; otherwise, the command following the test is ignored and execution continues after.

The comparative tests are :
comparison between X and zero

G	TST	7	$\mathrm{X}=0$	1i=
G	TST	8	X<>0	ill 7
G	TST	4	X >0	117
G	TST	5	$\mathrm{X}>=0$	117-5
G	TST	\bigcirc	X<0	ilic
G	TST	2	$\mathrm{X}<=0$	ill $=9$

comparison between X and \mathbf{Y}

G	TST	-	9	$\mathrm{X}=\mathrm{Y}$	$1:=Y$
G	TST	-	3	X<>	112
G	TST	-	4	$x>Y$	צר
G	TST	-	5	$x>=Y$	17- ${ }^{1 / 2}$
G	TST	-	0	$X<Y$	112
G	TST	-	2	$\mathrm{X}<=\mathbf{Y}$	HL=

The BST (Back Step) key in programming mode returns to the previous step.

SV

Su - Save in constant memory

In "execution" mode the SV (Save) function allows saving in constant memory (or continuous memory) of registers and the stack.
In programming mode, programs can be saved in 3 constant memory zones of your choice by specifying 1, 2 or 3 behind the SV command.

G LD Ld - Load from constant memory

In "execution" mode, the LD (Load) function allows you to reload the registers and the stack saved in constant memory (or continuous memory).
In programming mode, a program can be reloaded from one of the 3 constant memory zones of your choice by specifying 1, 2 or 3 behind the LD command..

SST 55L - Step forward

The SST (Single Step) key advances one step in programming mode.
In "execution" mode, the program instruction, on which the pointer is positioned, is executed, allowing the program to be executed step by step for debugging purposes. Warning: in this case of step-by-step testing of the program if a subroutine is called, the return of the subprogram (RTN) works as in "execution" mode and returns to step 0 .

1.4
 \square
 PSE
 PRUSE - Pause

The Pause command stops program execution briefly and displays the contents of the \mathbf{X} register for the duration of the pause.

I E - View register

In a program, the VIEW command displays the contents of a register without stopping program execution.

RUS ri5-Run / stop program

The R/S (Run/Stop) key can be used to start or stop a running program. At startup, the program starts executing from the current program step (the current address can be found by switching to PRGM programming mode).
In programming mode \mathbf{R} / \mathbf{S} indicates stopping of the program.

2.1
 Shift key F

The \mathbf{F} key is used to change the meaning of the next key to an alternate function.
After pressing \mathbf{F}, the alternative function (in orange) of the next key is then executed. A second press on \mathbf{F} activates the alternative function \mathbf{G}.
A third press of \mathbf{F} cancels the previous presses of \mathbf{F}.

The title of the \mathbf{F} key is not recorded in the program; it is the alternative title of the following key which is then displayed.

Example:

In is actually obtained by pressing	F	$\&$

G
 Shift key G

The \mathbf{G} key is used to change the meaning of the next key to an alternate function.
This \mathbf{G} function is already an alternative function of the \mathbf{F} key.
After two successive presses of \mathbf{G}, the alternative function (in blue) of the next key is then executed.
A third press on \mathbf{G} cancels the previous presses on \mathbf{G}.

The name of the \mathbf{G} key is not recorded in the program, it is the alternative name of the next key which is then displayed.

Example:

$\mathbf{2 . 2} \quad \mathrm{F} \| \mathrm{IP}$, nt - Integer part

The IP (INTeger Part) key is used to remove digits after the decimal point from the number and to reduce the number to an integer.
The function has the same meaning as rounding to zero.

Example:

G
 FP
 FrRc - Fractional part

The FP (FRACtional Part) key is used to remove the digits before the decimal point from the number and to reduce the number to a fractional number.

Example:

2 - 8 an
FP $\quad .$. partie fractionnaire de - 2.3 [-. 3]
PRGM Prए̄̄ - Programming

PRGM enables or disables programming mode.

2.3
 EEX
 EEII - Entering an exponent of ten

The EEX function allows you to enter a number multiplied by a power of 10 .
If the key is pressed while entering a number, that entry displays the exponent at 00 while awaiting entry.
If the \mathbf{X} register (display) is at zero, pressing EEX gives 1 as the \mathbf{X} register value and displays the exponent at 00 while waiting for its entry.
The exponent can be negative using the CHS function.
In the event of overflow, the calculator displays

noP - No operation

The Nop (No Operation) command is an "empty" command that does not perform any operations. It is only used to fill an unused step in the program.

chs ch5 - Change of sign

The CHS key changes the sign of the number on the display.
Its use while entering the exponent of a number (power of ten) changes the sign of this exponent.

2.4

FIX
Fi if - Number of decimal places
Using the Fix key, the number displayed on the screen is rounded to the specified number of decimal places.
The number 0 to 6 is entered as a parameter, representing the number of decimal places after the decimal point: 0 to 6 .
In rounding mode, the number is padded from the right with zeros, up to the specified number of decimal places.
Rounding only affects the number display. Internally, the number (\mathbf{X} register) continues to be memorized in full.
The rounding mode set also affects how very small numbers are displayed. If the number of decimal places to display only concerns zero decimal places, the number is displayed in negative powers of 10 .

Examples:

G Scl Scı - Scientific notation

Using the SCI key, the number displayed on the screen is displayed as a power of ten rounded to the specified number of decimal places. The number 0 to 3 is entered as a parameter, representing the number of decimal places after the decimal point 0 to 3 . In rounding mode, the number is padded from the right with zeros, up to the specified number of decimal places.
Rounding only affects the number display. Internally, the number (\mathbf{X} register) continues to be memorized in full.

Examples:

								8	

Example:

Division of 2.2 by 0.5

3.1

Sin-Sinus

The sin function calculates the sine of an angle in radians.
The angle must be entered in radian.
If the angle is in degrees it must first be converted into radians using the function Deg-Rad.

Example:

\rightarrow Rad \square gives 0. 156434

G
 ASIN
 R5, n - Arcsinus

The sin-1 (Arcsine) function calculates the arcsine of an angle in radians.
The angle must be entered in radians.
If the angle is in degrees it must first be converted into radians using the function
Deg-Rad.

3.2

 \cos
 co5-Cosine

The cos function calculates the cosine of an angle in radians.
The angle must be entered in radian.
If the angle is in degrees it must first be converted into radians using the function
Deg-Rad.

Acos Rco5-Arccosine

The cos-1 (Arccosine) function calculates the arccosine of an angle in radians.
The angle must be entered in radians.
If the angle is in degrees it must first be converted into radians using the function
Deg-Rad.

3.3 F TAN LR - Tangent

The $\boldsymbol{t a n}$ function calculates the tangent of an angle in radians.
The angle must be entered in radian.
If the angle is in degrees it must first be converted into radians using the function Deg-Rad.

G ATAN RLR - Arctangent

The tan-1 (Arctangent) function calculates the arctangent of an angle in radians. The angle must be entered in radians.
If the angle is in degrees it must first be converted into radians using the function Deg-Rad.

$3.4 \quad$ F STO Sto - Store in a registry

STO (Store) allows to store the displayed number in the data register 0 to 9 or 0 to . 9 . Register number 0 to 9 or .0 to .9 is entered as an instruction parameter.

STO (Store) can also be used "arithmetically" by inserting an operator before the register number (0 to 9 or .0 to .9) entered as a parameter.

Example :

2	STO	¢	7		adds 2 to the contents of register 7
4	Sto	E 3	-	¢	multiplies the contents of register . 1 by 4

STO (Store) allows you to modify the contents of the stack registers ($\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ ou \mathbf{T}). Warning: entering a number before the STO shifts the stack!
Arithmetic operators can also be used.

affects the \mathbf{X} register in the stack. affects the \mathbf{Y} register in the stack. affects the \mathbf{Z} register in the stack. affects the \mathbf{T} register in the stack.

In addition to direct storage functions in registers 0 to 9 , .0 to .9 and stack, STO (Store) can also store data indirectly in registers 1 to 29, register 0 being used as an index.
These 29 registers are the "standard" or "primary" registers for the first 15 which therefore correspond to registers R0 to R.5, and indirect registers for the following 14 which can only be used in indirect addressing.

The key to signify "Index" is the key ENiER

Example :

Primary registers		Indirect registers	
R 1	1	R(16)	16
R 2	2	R(17)	17
R 3	3	R(18)	18
R 4	4	R(19)	19
R 5	5	R(20)	20
R 6	6	R(21)	21
R 7	7	R(22)	22
R 8	8	R(23)	23
R 9	9	R(24)	24
R. 0	10	R(25)	25
R. 1	11	R(26)	26
R . 2	12	R(27)	27
R. 3	13	R(28)	28
R . 4	14	R(29)	29
R . 5	15		

stores 7 as index value in register 0 , then stores the value 24 in the indirect register (R7)
multiplies by ten the contents of the register whose index is stored in register 0 .

RCL (Recall) is used to recall a number from data register 0 to 9 or .0 to .9 to the display.
Register number 0 to 9 or .0 to .9 is entered as an instruction parameter.
RCL (Recall) can also be used "arithmetically" by inserting an operator before the register number (0 to 9 or .0 to 9) entered as a parameter.

Example:

Note : this arithmetic operation does not affect the contents of the register but only the displayed value.
$\mathbf{R C L}$ (Recall) allows you to recall the contents of a register from the stack $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ or \mathbf{T}. Note : the number displayed shifts the stack!
Arithmetic operators can also be used.

recalls the register \mathbf{X} from the stack. recalls the register \mathbf{Y} from the stack. recalls the register \mathbf{Z} from the stack. recalls the register \mathbf{T} from the stack.

In addition to the direct recall functions from registers 0 to $9, .0$ to .9 and from the stack, RCL (Recall) can also recall data indirectly from registers 1 to 29, register 0 being used as index.
These 29 registers are the "standard" or "primary" registers for the first 15 which therefore correspond to registers R0 to R.5, and indirect registers for the following 14 which can only be used in indirect addressing.

The key to signify "Index" is the key EniER

Example:

Primary registers	
R 1	1
R 2	2
R 3	3
R 4	4
R 5	5
R 6	6
R 7	7
R 8	8
R 9	9
R .0	10
R .1	11
R .2	12
R .3	13
R . 4	14
R . 5	15

Indirect registers	
$\mathrm{R}(16)$	16
$\mathrm{R}(17)$	17
$\mathrm{R}(18)$	18
$\mathrm{R}(19)$	19
$\mathrm{R}(20)$	20
$\mathrm{R}(21)$	21
$\mathrm{R}(22)$	22
$\mathrm{R}(23)$	23
$\mathrm{R}(24)$	24
$\mathrm{R}(25)$	25
$\mathrm{R}(26)$	26
$\mathrm{R}(27)$	27
$\mathrm{R}(28)$	28
$\mathrm{R}(29)$	29

stores 7 as index value in register 0 , then recalls the value contained in the indirect register (R7)

40 RCL ES ENGER recalls the contents of the register whose index is stored in register 0 and multiplies the display by 10.

The sign \mathbf{X} allows you to multiply the first operand (in the stack) by the second operand (in register \mathbf{X}) according to the principle of Reverse Polish Notation (RPN).

Example:

Multiplication of 2.2 by 0.5
8 -

ENTER \square
\square
\square 2 es 1.1

4.1
 \square
 \square Ln - Natural logarithm

In calculates the natural logarithm of the displayed number.
This natural logarithm uses Euler's constant as a base with the value 2.718281828459 to be calculated.
The argument of the $\mathbf{I n}$ function must be a non-zero positive number.
In case of zero or negative number, the display will show the value dt Errar (data error), as error indication.

Example:

calculates the natural logarithm of $5=1.509438$

G ex EiIP - Natural exponent

The natural exponent is calculated from Euler's constant (value
2.718281828459) raised to the power X.

Example:

5 (5) calculates the natural exponent of $5=148.4131$

4.2
 \square
 \square
 Lロ́ㄴ - Decimal logarithm

LOG calculates the decimal logarithm of the displayed number.
The argument of the LOG function must be a non-zero positive number.
In case of zero or negative number, the display will show the value dt Errar (data error), as error indication. .

Example:

5 LOG calculates the natural logarithm of $5=1.598974$

10x RLo[

$\mathbf{1 0}^{\mathbf{x}}$ calculates the decimal exponent of the number \mathbf{X} displayed, i.e. 10 raised to the power of \mathbf{X}.
Example:
(5) 10x calculates the decimal exponent of $5=1$,

4.3

 \square 59rt - Square root

$\sqrt{\mathbf{X}}(S Q R T)$ allows you to calculate the square root of a number. The number must not be negative.
In the case of a negative number, the display will show the value oft Errar (data error), as error indication.

$\mathrm{G} \quad \mathrm{X}^{2}$ 59r - Square of a number

The \mathbf{X}^{2} function calculates the square of a number, or the multiple of a number by itself.
4.4

With the $\mathbf{x}<>\mathbf{y}$ key, it is possible to swap the \mathbf{X} and \mathbf{Y} registers.
The \mathbf{X} register is the working register and also the display contents.
The \mathbf{Y} register is the register preceding the X register in the stack RPN.

G $\mathrm{R} \downarrow$
 rdoūn - Scrolling the stack down

With the \mathbf{R} down key, it is possible to scroll through the registers of the stack by permuting them in cascade.

Example:
$\begin{array}{cc}\text { Stack } & \\ \text { T } & \mathbf{1} \\ Z & 2 \\ Y & 3 \\ X & 4\end{array}$

$R \downarrow$	$\mathrm{R} \downarrow$	$\mathrm{R} \downarrow$
4	3	2
1	4	3
2	1	4
3	2	1

σ

- - Substraction

The sign - allows you to subtract the second operand (in register X) from the first operand (in the stack) according to the principle of Reverse Polish Notation (RPN).

Example:

Subtraction of 0.5 from 2.2
2 \square
\square E ENTER \square
 \square
\square
\square8.7

$5.1 \quad F \quad 1 / x$ ir 1 il - Multiplicative inverse

The $\mathbf{1 / x}$ function allows you to calculate the inverse of a number.
If the number is zero, the display will show the value dt Errar (data error), as error indication.

G $\mathrm{y}^{\mathrm{x}} \quad \boldsymbol{\pi}$. Exponentiation

The $\mathbf{y}^{\wedge} \mathbf{x}$ instruction raises the first operand \mathbf{Y} (in the stack) to the power expressed by the second operand \mathbf{X} (displayed in the \mathbf{X} register)

Example:

$5.2 \quad \mathrm{~F}, \mathrm{in} \rightarrow$, $\boldsymbol{n}-\bar{n} \bar{n}$ - Convert Inches to millimeters
The IN-MM function converts inches to millimeters.
1 " $=25.4 \mathrm{~mm}$
The inch is a unit of length used in the Anglo-Saxon system of measurement units, representing $1 / 12$ of a foot.

G -mm $\bar{n} \bar{n}-, n$ - Convert Millimeters to Inches

The MM-IN function converts millimeters to inches.
$1 \mathrm{~mm}=0.039370{ }^{\prime \prime}$
The millimeter is a unit of length used in the metric system, equivalent to one thousandth of a meter.

$5.3 \quad \mathrm{~F} \mathrm{mi} \quad \bar{n}_{1}-\vdash \bar{n}$ - Convert Miles to kilometers

The MI-KM function allows you to convert miles to kilometers.
$1 \mathrm{mi}=1.60934 \mathrm{~km}$
The mile is a unit of length used in the Anglo-Saxon system of measurement units, equivalent to 5,280 feet or 1,760 yards.

G $-\mathrm{km} \vdash \bar{n}-\bar{n}_{1}$ - Convert Kilometers to miles

The KM-MI function converts kilometers to miles.
$1 \mathrm{~km}=0.62137 \mathrm{mi}$
The kilometer is a unit of length used in the metric system, equivalent to 1000 meters.

$5.4 \quad \mathrm{~F} \quad \mathrm{lb} \rightarrow$ Lb-ト■ - Convert Pounds to kilograms

The LB-KG function converts pounds to kilograms.
$1 \mathrm{lb}=0.45359 \mathrm{~kg}$
The pound is a unit of weight used in the Anglo-Saxon system of measurement units, equivalent to 16 Ounces (OZ).

The KG-LB function converts kilograms to pounds.
$1 \mathrm{~kg}=2.20462 \mathrm{lb}$
The kilogram is a unit of weight used in the metric system, equivalent to 1000 grams.

$\} \quad \nrightarrow$-Addition

The sign + allows you to add the second operand (in register X) to the first operand (in the stack) according to the principle of Reverse Polish Notation (RPN).

Example:

Addition of 2.2 and 0.5
8 \circ

ENTER \square
\square 3 引 2.7

6.1
 \square
 \square
 cLr - Clearing the display

CLR clears the \mathbf{X} register so the display.

G
 \square
 cLrRLL - Clearing all Data

ALL erase all data :

- the RPN stack (X, Y, Z, T),
- all registers (0 to 9 and .0 to .9)

	β		Input
- In "execution" mode the "Back" function erases the last digit entered. - In programming mode the "Back" function erases the current step.			
6.2	F	π	P - PI

The $\pi(P i)$ key is used to enter the Archimedes constant, the value of 3,141592 .

The Deg-Rad function converts an angle value in degrees into an angle value in Radian.
$1^{\circ} \times \pi / 180=0,017453 \mathrm{rad}$
6.3 \square F-c - Convert Farenheit to Celsius
The ${ }^{\circ} \mathbf{F}-{ }^{\circ} \mathbf{C}$ function converts degrees Farenheit to degrees Celsius.
$1{ }^{\circ} \mathrm{F}=-17.222^{\circ} \mathrm{C}$
On the Fahrenheit scale, primarily used in the United States, the freezing point of water is set at 32 degrees, while the boiling point of water is set at 212 degrees (scale divided into 180 intervals).

G $\leftarrow^{\circ} \mathrm{C}$ c-F - Convert Celsius to Farenheit

The ${ }^{\circ} \mathbf{C}-{ }^{\circ} \mathbf{F}$ function converts degrees Celsius to degrees Farenheit. $1{ }^{\circ} \mathrm{C}=33.800{ }^{\circ} \mathrm{F}$
On the Celsius (centigrade) scale, used in most countries as the standard unit of measurement for temperature, the freezing point of water is set at 0 degrees, and the boiling point of water is set at 100 degrees (scale divided into 100 intervals).

0

. - Decimal point

The period (.) is the separator of whole digits and decimal digits of a number. It is also used to prefix registers .0 to .9 and labels .0 to .9
6.4 F LASTX LRSLII - Last X

The LastX function allows you to recall the last known operand in register \mathbf{X}.

Example:

ENoteg EntEr - Enter a number

The Enter key validates the entry of a number and copies it into the Y register by shifting the stack (Z into T, Y into Z, X into Y) while keeping this number in the register \mathbf{X} (display) until the introduction of a new number.

7. Example programs

1. Forensics

Classic calculator test to test calculation accuracy.
This "forensics" algorithm invented by Mike Sebastian to quickly provide a comparison of the accuracy of scientific calculators applies the following calculation :

```
arcsin(arccos(arctan(tan(cos(sin(9))))))
                                    or
    9 sin cos tan atan acos asin
```


Use:

GSB	0	... start the calculation

Program :

Result :

8.99996 :

2．Factorial

Calculating the factorial of a number

Use ：

n number for which the factorial must be calculated
GSB 乌 ．．．launches the factorial calculation

Program ：

i Lbil 1	program start label
$2 F_{1} 11$	set decimal places to 0
3 5ta	stores the number n in register 1
41	stores the value 1
5 5ta 2	in register 2
5 Lbig	label for iterative loop
7 ral 1	rank of calculation
Q 5t－2	which multiplies the result
91	
䛧 5L－ 1	decrements the rank of the calculation
if rel 1	reminder of the rank value
IIC ill	if different from zero
13 「L心 9	then return to the start of the loop
H rci 2	reminder result
15 rta	end of program

Result ：

n ！

3. Fibonacci

Calculates a Fibonacci number of rank n

Use:

n rank for which we must find the Fibonacci number

GSB	2

Program :

1 Lbl 2	program start label
2 5to.0	stores the number n in register . 0
31	stores the value 1
$45 t 0.1$	in register . 1
50	
5 5to .2	
7 Lbl 7	label for iterative loop
9 rat .	
91	
10	decrements the rank of the calculation
i 5 5o. 0	reminder of the rank value
$12 \quad 11=0$	if equal to zero
13 Uto 8	then number found therefore end
14 rct . 1	I
$15 \mathrm{rct}$. . 2	I
16 -	\|
17 5to. 3	> calculates the number
$18 \mathrm{rct}$.	I
19 5to.2	I
20 rci . 3	1
21 5to. 1	1
22 Lto 7	next iteration
23 LbL 8	
24 rci 3	reminder of the result
25 Fillo	set decimal places to 0
25 rris	end of program

4. Circle

Calculates the perimeter and area of ??a circle from the radius

Use:

$r \quad$ radius of the circle

GSB	5	calculates and displays the perimeter

R/8 calculates and displays the area

Program :

1	Lbi 5	program start label
2	Fill 2	set decimal places to 2
3	5to 0	stores the radius r in register . 0
4	2	
5	\bigcirc	> calculates the perimeter $\mathrm{r} \times 2 \times \pi$
5	p_{1}	
7	\bigcirc	I
8	ror	
9	rci 0	recall radius r from register . 0
10	59	
11	1 P1	> calculates the area $\mathrm{r}^{2} \times \pi$
12	-	I
13	5	
	4 Lto 5	

5. Stirling

The Stirling formula (James Stirling, Scottish mathematician, born in May 1692 in Garden near Stirling and died on December 5, 1770 in Edinburgh) makes it possible to approach the factorial of a number.

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

This improved formula will provide a better approach :

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}\left(1+\frac{1}{12 n}\right)
$$

When the function n! (factorial) does not exist on a calculator, this factorial calculation of a number is usually done on programmable calculators using an iterative loop.
This kind of calculation can be very inexpensive in terms of number of steps but excessive in time for large numbers.
On the other hand, the Stirling formula gives an approximation of the result very quickly but costs a few program steps. (see factorial program page 24)

Use :

$\mathrm{n} \quad$ number for which the factorial must be calculated

GSB	4	... Iaunches the factorial calculation

Program :

1 Lbi 4	14
25 Lo. 0	15 rct .1
3 2	15 믕
4 -	17 rct 0
$5 \quad P_{1}$	18 irli
5 -	19
7 59rt	203
9 5ta. 1	11
$9 \mathrm{rct.g}$	22
101	23 -
if EilP	24 -
$12 \quad 1$	25 Fili 0
$13 \mathrm{rct}$.	26 5-r

6. Binet

Binet's formula (Jacques Philippe Marie Binet, French mathematician and astronomer, born in Rennes on February 2, 1786 and died in Paris on May 12, 1856) provides the nth term of the Fibonacci sequence.

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

The calculation of the nth term of the Fibonacci sequence is usually done on programmable calculators using a loop up to n. (see Fibonacci program page 25)
This kind of calculation can be very inexpensive in terms of number of steps but excessive in time for high values ??of n.
On the other hand, Binet's formula gives the result very quickly but costs many program steps.

Use:

n rang pour lequel il faut rechercher le nombre de Fibonacci

GSB	3	... launches the calculation

Program :

7．GCD

One of the classic little programs for programming calculators．．．
Many programmers started with these small programs whose usefulness was to learn the language of the newly acquired calculator．．

Use ：

n1 first number

Program ：

1 Lbi 5	13 －
こ 5ta 2	14 Eh5
3 rdoun	15 ral 1
4 rdaun	15 － 15
5 5ta 1	17 5ta 3
5 Lbl 7	㐰 ral 〕
7 rei 1	19 Sta 1
Q rai 2	ご，ral こ
9515	21 in
in－	ここ 「ヒロ 7
if ，nt	こコ rai 1
i2 rei 2	24 r－45

8．Birthday

The birthday paradox calculates the percentage chance of finding 2 people with the same birthday（not necessarily born in the same year）in a group of n people．

$$
p(n)=1-\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdots \cdots \frac{365-n+1}{365}
$$

To simplify，the formula chosen assumes that all years are non－leap years．
Considering leap years would change the results of the calculations little，but would make the programs more complicated．

Use ：

number of persons

| GSB | 0 |
| :--- | :--- | ．．．starts the percentage calculation

Program ：

1 LbL ${ }^{1}$	17 ral 1
25104	相 5L－こ
3 J	19 ral こ
45	2円5 5ı3
55	こ1 「ヒロ 1
5 irlit	こコ Lbi $コ$
7 5ta 1	こコ F，\｜こ
日 1	24 1
95102	こら rai 3
in 5ta 3	26
if LbL 1	271
121	2日
13 5L－4	29
IH rei 4	30，
15 1i＝行	315
15 FLE 2	

9. Ramanujan

Ramanujan's formula allows you to calculate the factorial of a number n.

$$
n!\sim \sqrt{\pi}\left(\frac{n}{e}\right)^{n} \sqrt[6]{8 n^{3}+4 n^{2}+n+\frac{1}{30}}
$$

(Srinivasa Ramanujan, Indian mathematician, born December 22, 1887 in Erode and died April 26, 1920 in Kumbakonam)

Use :

> | n | number for which the factorial must be calculated | | |
| :---: | :--- | :--- | :---: |
| | | | |
| GSB | 0 | ... launches the factorial calculation | |

Program :

1 Lbl	17 믕
2 5ta.0	18
3 i	19 -
45	$20 \mathrm{rct.g}$
$5 \quad$ -	21
5 ral . 0	223
7 ¢	230
$8 \quad P_{1}$	24 irit
9 59rt	25 -
10 O	$25 \quad 5$
118	27 1rit
12 rct .0	28 〕
13 믕	29 -
144	30 Fil 0
15 -	315
16 rcl . 0	

10. Trigo

Calculation of the sines, cosines and tangent of an angle in degrees.
Does not use the SIN, COS, TAN, PI functions of the calculator.
The results are stored in registers .1, 2 and .3

Use :

n angle in degrees

| GSB | Q |
| :--- | :--- | :--- |

Program :

兰n

43	5
44	\bigcirc
45	3
45	-
47	ral of
48	rci .
49	9
50	4
51	ch5
52	\bigcirc
53	\bigcirc
54	1
55	-
55	$5 \mathrm{ta} \mathrm{E}^{\text {cosinus }}$
57	rci . 1
58	5 LRP
59	-
50	5to. 3 TANGENTE
51	cir
62	5

11. Gravité

Calculation of fall time, in seconds, depending on height

Use :

h height in meters

GSB	3	.. launches the calculation

Program :

1	LbL	3
2	2	
3	0	
4	9	
5	0	
5	8	
7	r	
8	$5 a r t$	
9	$r b n$	

Different approximations of PI...

Use :
GSB

4ou \square ou \square 8 ou \square ou \square 5 ... calculation of PI

Program :

13. Premier

Finding the prime number closest to the number n entered.

Use :

n maximum number for search

| GSB | 0 |
| :--- | :--- | :--- |
| | (.. launches the search |

Program :

14. Hilo

HILO game: you have to guess a number...
If the number proposed is less than the guess number, display of -1
If the number proposed is greater than the guess number, display of 1
If found display of 88888 then display of number of moves played.

Use :

xx.xxxx "seed" number...

| GSB | (0) |
| :--- | :--- | :--- |

n (between 0 and 1000) N(S. ... to repeat until the end of the game

Program :

15．Fraction

Returns a number to 2 decimal places as a fraction．
（Example： 12.48 ．．．312／25）

Use ：

nn．nn number to transform into fraction（Example：i卫．4日）

GSB	0	a launches the calculation

．．．then displays the numerator（Example：$\Xi \mathfrak{i}$ ）
R／3 ．．．displays the denominator（Example ：こ5）

Program ：

1 LbL	19 －
2 Fill 2	20 ch5
3	21 rcl 1
40	22－
$5 \quad 0$	23 5to 2
（ 5 5to 1	24 rci 3
7 5to． 1	25 5to 1
8 －	25 ral 2
9 ，nt	27 ill
10560.3	28 Eto 7
115 Lo 2	$29 \mathrm{rct}$. ．
12 LbL 7	30 rct 1
13 rct 1	31
14 rcl 2	32
15 5to 3	$33 \mathrm{rcL}$.
15 －	34 rct 1
17 ，nt	35 r
18 rch 2	35

16. Convert

Decimal to binary or binary to decimal conversion.

Use :

	GSB	8		for decimal to binary	displays 10.2
OR					
	GSB	-	8	for binary to decimal	displays 2.10
number	GSB	0		... launches the conv	

Program :

WELCOME TO THE RPN-1250 CALCULATOR

KEY FEATURES

Based on Microchip PIC 18F2680
(64 k FLASH) at 8 MHz or PIC 18F26K80
(64 k FLASH) at 16 MHz
MAX 7219 Display driver
8-digit 7 -segment LED display
RTC (RPN-1250+)
Original TI-1250 enclosure
9V standard battery

Programmable - 98 steps

Save 3 programs to continuous memory
6 levels of subroutine
All 12 tests
Indirect addressing

Scientific Functions
Basic Conversions

RUN MODE

In RUN mode:
SV saves all memories
and stack into
continuous memory
LD restores all memories
and stack from
continuous memory

20 memories: $0 \sim 9$ and $.0 \sim .9$
Store and Recall Arithmetic

STACK REGISTERS

INDIRECT ADDRESSING
Store and Recall functions
(including store and recall
arithmetic) and VIEW can
operate on stack registers,
which are linked to the
top row keys
As in the HP-29C the indirect addressing register is RO Indirect addressing (i) works with Store, Recall (including store and recall arithmetic) and VIEW functions only (No fix (i), or GSB (i)) and is called with the [ENTER] key

REAL TIME CLOCK (RTC) RPN-1250+ Only

Time, Date and Day Of Week are addressed as pue [Wפצd] [XİヨУd] ə૫ł [CHS] Keys

Time format is hh.mmss (24 hour)

Date format is mm.ddyy
Day of Week is $1^{\sim} 7$ for Mon-Sun

RTC functions are programmable

